
Making CRDTs Byzantine Fault Tolerant
Martin Kleppmann
martin@kleppmann.com
University of Cambridge

Cambridge, UK

Abstract
It is often claimed that Conflict-free Replicated Data Types
(CRDTs) ensure consistency of replicated data in peer-to-
peer systems. However, peer-to-peer systems usually con-
sist of untrusted nodes that may deviate from the specified
protocol (i.e. exhibit Byzantine faults), and most existing
CRDT algorithms cannot guarantee consistency in the pres-
ence of such faults. This paper shows how to adapt existing
non-Byzantine CRDT algorithms and make them Byzantine
fault-tolerant. The proposed scheme can tolerate any num-
ber of Byzantine nodes (making it immune to Sybil attacks),
guarantees Strong Eventual Consistency, and requires only
modest changes to existing CRDT algorithms.

CCSConcepts: •Computer systems organization→Peer-
to-peer architectures; • Security andprivacy→Distributed
systems security.

Keywords: Byzantine fault tolerance, CRDTs, optimistic repli-
cation, eventual consistency
ACM Reference Format:
Martin Kleppmann. 2022. Making CRDTs Byzantine Fault Tolerant.
In 9th Workshop on Principles and Practice of Consistency for Dis-
tributed Data (PaPoC’22), April 5–8, 2022, RENNES, France. ACM,
NewYork, NY, USA, 8 pages. https://doi.org/10.1145/3517209.3524042

1 Introduction
A key characteristic of many peer-to-peer (P2P) systems is
that peers are not under the control of a single authority [10];
indeed, many P2P applications are open, trustless systems
in which anybody on the Internet can run a node and join
the system. As the operators of nodes cannot be trusted, it
must be assumed that some nodes may not correctly follow
the specified protocol of the network: be it due to bugs in
implementations, hardware glitches [19], deliberate attempts
to gain an advantage over other nodes, or sheer vandalism,
a P2P system cannot rely on nodes always behaving the way
that the designers of the system intended. Nodes may send

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PaPoC’22, April 5–8, 2022, RENNES, France
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9256-3/22/04.
https://doi.org/10.1145/3517209.3524042

false, malformed, or contradictory messages to other nodes,
and they may try to actively undermine any guarantees the
system aims to provide. As P2P systems grow to larger scale,
the probability of such problematic behaviour increases.
When a node deviates from the specified protocol, we

call it Byzantine-faulty (or simply Byzantine), regardless of
whether the deviation is by accident or by malice [25]. Byzan-
tine behaviour is not always detectable by other nodes, since
a Byzantine node may attempt to hide its protocol violations.
One approach would be to try to identify Byzantine nodes
and exclude them from the system, but this is unlikely to be
effective if the banned node can simply rejoin the system
under a different identity, and the system would still have to
somehow repair the damage already done by the Byzantine
node. A more robust approach is to tolerate Byzantine faults:
that is, to ensure that the system canmeet its advertised guar-
antees even when some of its nodes are Byzantine-faulty.
Conflict-free Replicated Data Types (CRDTs) [40] are of-

ten presented as an approach for providing consistency of
replicated data in peer-to-peer systems [32, 42, 44], because
they do not require a central server for concurrency con-
trol. However, despite ostensibly targeting P2P systems, the
vast majority of CRDT algorithms actually do not tolerate
Byzantine faults, since they assume that all participating
nodes correctly follow the protocol. If such algorithms are
deployed in a system with Byzantine nodes, the algorithm
cannot guarantee the consistency properties that CRDTs are
supposed to provide, and nodes may end up with perma-
nently inconsistent replicas of the shared data.
In some circumstances, the lack of Byzantine fault toler-

ance can be justified by restricting CRDT-based collaboration
to small, trusted groups of nodes: for example, in a collabora-
tive editor, the set of users who are authorised to edit a docu-
ment may be limited to immediate colleagues, who may trust
each other to run the CRDT algorithm correctly. However,
as the range of collaborators is widened to public settings
such as wikis [31, 43, 44], and as CRDT designers seek to
enable collaboration at “massive scale” [3, 28, 44], blindly
trusting collaborators to do everything correctly seems like
an increasingly dangerous assumption.
How difficult is it then to provide Byzantine fault tol-

erance (BFT) for CRDTs? We might take inspiration from
Byzantine consensus systems, which have received much
attention due to their use in blockchains. Experience has
shown that providing BFT requires consensus algorithms

https://orcid.org/0000-0001-7252-6958
https://doi.org/10.1145/3517209.3524042
https://doi.org/10.1145/3517209.3524042


PaPoC’22, April 5–8, 2022, RENNES, France Martin Kleppmann

that differ fundamentally from their non-Byzantine coun-
terparts and are significantly more expensive [6]. Moreover,
Byzantine consensus is only possible if we assume that less
than one third of the nodes in the system are faulty [16].
This assumption is problematic for P2P systems: to prevent
many adversary-controlled nodes joining the network and
overwhelming it (a Sybil attack [15]), they must either exer-
cise centralised control over which nodes are allowed to join
the network, or employ expensive Sybil countermeasures
such as proof-of-work [30].
This paper shows that the situation with BFT CRDTs is

very different from BFT consensus: it is possible to guarantee
the standard CRDT consistency properties even in systems in
which arbitrarily many nodes are Byzantine, e.g. where the
Byzantine nodes outnumber the correct nodes. This makes
the algorithms immune to Sybil attacks, allowing them to be
deployed in open P2P systems that anybody can join, without
requiring proof-of-work or proof of any other resource.
Moreover, making CRDTs Byzantine fault tolerant does

not require a redesign of the algorithms: it is possible to
retrofit BFT to existing CRDT algorithms with some modest
tweaks, without changing the fundamental way how they
work. This paper introduces the principles that are needed
to make operation-based CRDT algorithms robust against
Byzantine faults.

2 Background and system model
This section highlights some of the problems that CRDT
algorithms encounter when faced with Byzantine faults.

2.1 System model: nodes and network links
This paper assumes a peer-to-peer system in which all nodes
are equal peers. The set of nodes need not be known, and
nodes may join and leave at any time. Nodes may fail by
crashing, and maybe recover again after a crash; and nodes
may arbitrarily deviate from the protocol (i.e. exhibit Byzan-
tine behaviour). One node does not know whether another
node is Byzantine. Nodes that are neither crashed nor Byzan-
tine are called correct. There is no limit on the number of
crashed or Byzantine nodes in the system.
Nodes can communicate by exchanging messages over

pairwise network links. The network is not necessarily com-
plete, i.e. it is not required for every node to be able to com-
municate with every other node. Nodes and network links
are assumed to be asynchronous and unreliable with a fair-
loss assumption, i.e. messages may be lost but are eventually
received after a finite number of retries. Byzantine nodesmay
behave arbitrarily, including sending corrupted, contradic-
tory, or malicious messages. However, we assume that when
two correct nodes communicate with each other directly,
the messages they exchange are not corrupted; this can be
ensured by cryptographically authenticating messages.

2.2 Correctness of CRDTs
The standard model of correctness for CRDTs is Strong Even-
tual Consistency [17, 40], which requires:

Eventual delivery: An update delivered at a correct
replica is eventually delivered at all correct replicas.

Convergence: Correct replicas that have delivered the
same set of updates have equivalent state.

Termination: All method executions terminate.

Termination is generally easy to ensure, so we focus on
the other two properties. Systems usually ensure eventual
delivery by using a reliable broadcast protocol, such as a
gossip protocol [26], to disseminate updates. To ensure con-
vergence, operation-based CRDTs construct updates such
that they are commutative: delivering them in any order
results in the same replica state. In some cases, a causal de-
livery algorithm additionally ensures that when one update
has a dependency on an earlier update, the earlier update is
delivered before the later update on all replicas.

2.3 Eventual delivery with Byzantine nodes
In a non-Byzantine system, eventual delivery can obviously
only be achieved if there is someway for every pair of correct
nodes to communicate, either directly or indirectly via other
correct nodes. Two nodes that are permanently partitioned
from each other can never communicate and hence cannot
ensure they deliver the same updates.

This idea generalises to Byzantine systems: if p and q are
correct nodes, and if all of the communication paths between
p and q go via Byzantine nodes, then eventual delivery can-
not be guaranteed, since the Byzantine nodes may choose to
block communication between p and q. To ensure eventual
delivery, we therefore have to assume that any two correct
nodes can communicate either directly, or indirectly via other
correct (non-Byzantine) nodes.

We focus on the case where two correct nodes p and q can
communicate with each other directly; the case of indirect
communication via other correct nodes then consists simply
of several instances of such pairwise direct communication,
chained together. Eventual delivery then requires that if p
has delivered some update u, then q must also eventually
deliver u.
To ensure that p and q eventually deliver the same set of

updates, a simple but inefficient algorithm would be: period-
ically, p sends q every update that it has not already received
from q, and vice versa. This algorithm has the downside that
many updates may be sent to nodes that have already re-
ceived them from another node, wasting network bandwidth.
The advantage of this algorithm is that it is robust against
Byzantine nodes: regardless of whether an update originated
from a Byzantine or non-Byzantine node, correct nodes will
propagate it to other correct nodes.



Making CRDTs Byzantine Fault Tolerant PaPoC’22, April 5–8, 2022, RENNES, France

p r q

(r , 1) : A

vec = (p : 0,q : 0, r : 1), Up = {A}

(r , 1) : B
vec = (p : 0,q : 0, r : 1), Uq = {B}

(p : 0,q : 0, r : 1)

vec = (p : 0,q : 0, r : 1), Uq = {B}

(p : 0,q : 0, r : 1)

vec = (p : 0,q : 0, r : 1), Up = {A}

Figure 1. Byzantine node r sends two different updates (A and B) with the same ID (r , 1) to correct nodes p and q. Now, p and
q have identical version vectors, even though they have delivered different sets of updates Up , Uq .

2.3.1 Version vectors. It would be desirable to have a
more efficient protocol for nodes p and q to determine which
updates they need to exchange so that, at the end, both have
delivered the same set of updates (an anti-entropy or recon-
ciliation protocol). A common algorithm for this purpose is
to use version vectors [34]: each node sequentially numbers
the updates that it generates, and so the set of updates that a
node has delivered can be summarised by remembering just
the highest sequence number from each node.

Unfortunately, version vectors are not safe in the presence
of Byzantine nodes, as shown in Figure 1. This is because a
Byzantine node may generate several distinct updates with
the same sequence number, and send them to different nodes
(this failure mode is known as equivocation). Subsequently,
when correct nodes p and q exchange version vectors, they
may believe that they have delivered the same set of updates
because their version vectors are identical, even though they
have in fact delivered different updates.
Even if updates are signed, this type of misbehaviour by

Byzantine nodes cannot be ruled out. The reuse of the same
sequence number might later be detected, but this would
require an additional protocol on top of version vectors.

2.3.2 Byzantine reliable broadcast. Protocols for Byzan-
tine reliable broadcast [9, 12, 18] can ensure that all correct
nodes deliver the same set of messages. However, these proto-
cols actually offer a stronger property than what is required
for CRDTs, which comes at the cost of the algorithm tolerat-
ing only less than one third of nodes being Byzantine.
In the single-message formulation of Byzantine reliable

broadcast, all nodes deliver only one message, and that mes-
sage must be the same on all nodes. In the generalisation
to multiple messages, each message is associated with a
per-sender sequence number, and the broadcast protocol
ensures that all nodes deliver the same message for a given
sender and sequence number [11]. To prevent an equivocat-
ing Byzantine node from causing nodes to deliver different
messages, these protocols require a quorum vote among the
nodes, thereby requiring more than two thirds of nodes to
be correct.

The eventual delivery property required for CRDTs is
slightly weaker: it only states that two correct replicas must
eventually deliver the same set of messages, but it does not
limit the number of messages, nor does it associate any se-
quence numbers with messages. This subtle but crucial dif-
ference removes the need for any quorum votes, and hence
enables algorithms that tolerate any number of Byzantine
nodes, as shown in Section 3.2.

2.4 Convergence with Byzantine nodes
Achieving the convergence property of Strong Eventual Con-
sistency depends on the state update logic that a CRDT algo-
rithm executes when an update is delivered. We can assume
that correct nodes all execute the same update logic, but
Byzantine nodes may send arbitrarily malformed updates to
the correct nodes.
Some types of updates can easily be identified as mal-

formed and rejected, for example because they do not follow
the message structure expected by the CRDT algorithm. If
the decision whether to reject an update is a deterministic
function of the update itself, and does not depend on the
state of the delivering node, then it is easy to ensure conver-
gence, since all correct nodes will make the same decision
on whether to reject a given update.
More problematic are updates that may or may not be

valid, depending on the replica state of the node delivering
the update. To give a few examples:

• Many CRDTs, such as Logoot [44] and Treedoc [36], as-
sign a unique identifier to each item (e.g. each element
in a sequence); the data structure does not allow mul-
tiple items with the same ID, since then an ID would
be ambiguous. Say a Byzantine node generates two
different updates u1 and u2 that create two different
items with the same ID. If a node has already delivered
u1 and then subsequently delivers u2, the update u2
will be rejected, but a node that has not previously de-
livered u1 may accept u2. Since one node accepted u2
and the other rejected it, those nodes fail to converge,
even if we have eventual delivery.



PaPoC’22, April 5–8, 2022, RENNES, France Martin Kleppmann

• In many CRDTs, one operation depends on a prior one:
for example, in RGA [38], an element in a sequence
can only be deleted if that element was previously
inserted, but a nonexistent element cannot be deleted.
With non-Byzantine nodes, the metadata on updates
can ensure that causally prior updates are delivered
before causally later ones, but Byzantine nodes may
not set this metadata correctly. Consequently, if update
u2 depends on update u1, it could happen that some
nodes deliver u1 before u2 and hence process both
updates correctly, but other nodes may try to deliver
u2 and fail because they have not yet deliveredu1. This
situation also leads to divergence.

• Some CRDTs include values in an update that must be
computed in a certain way. For example, inWOOT [33]
and YATA [32], an insertion operation must reference
the IDs of the predecessor and successor elements, and
the algorithms depend on the predecessor appearing
before the successor in the sequence. The order of
these elements is not apparent from the IDs alone, so
the algorithm must inspect the CRDT state to check
that the predecessor and successor references are valid.

3 Tolerating Byzantine faults
To achieve Byzantine fault tolerance, CRDT implementations
must be able to ensure eventual delivery and convergence
even in the presence of Byzantine nodes, overcoming the
problems listed in Sections 2.3 and 2.4. This section lays out
how CRDTs can tolerate Byzantine faults.

3.1 Constructing a hash graph
Let u be any update, encoded as a byte string. We then iden-
tify u by its hash H (u), where H is a cryptographic hash
function such as SHA-256 or SHA-3. We assume that H is
collision-resistant, i.e. that it is computationally infeasible
to find distinct x and y such that H (x) = H (y). This is a
standard assumption in cryptographic protocols.

Every update u contains a set of predecessor hashes, which
are hashes of updates that causally precedeu (in other words,
the causal dependencies of u). This may include the hash of
the last update generated by the same node, as well as any
hashes of updates received from other nodes since the last
update. An update may have an empty set of predecessors
if it is the first update to happen on a particular node. In
a system with no concurrency, each update after the first
contains one predecessor, namely the hash of the update that
occurred immediately before. When updates are generated
concurrently and then merged, the next update contains
multiple predecessors.

Dependencies that can be reached transitively via other de-
pendencies are not included in the set of predecessor hashes,
which ensures that this set remains small, even in systems
with a large number of updates. We define the heads to be

the set of updates that are currently not a dependency of any
other update.
Updates and predecessor hashes form a directed acyclic

graph (DAG). Each node locally stores a copy of the entire
DAG containing all of the updates it has delivered. This
graph resembles a Git commit history, with one difference:
because merges of concurrent updates happen automatically
in a CRDT, there is no concept of a “merge commit”. Instead,
after concurrent updates have occurred, we simply have
a DAG with multiple heads; the next update that causally
depends on those heads has multiple predecessor hashes.
The graph is essentially the Hasse diagram of the partial
order representing the causality relation among the updates.

3.2 Ensuring eventual delivery
Using cryptographic hashes of updates has several appealing
properties. One is that if two nodes p and q exchange the
hashes of their current heads, and find them to be identi-
cal, then they can be sure that the set of updates they have
observed is also identical, because the hashes of the heads
indirectly cover all updates. If the heads of p and q are mis-
matched, the nodes can run a graph traversal algorithm to
determine which parts of the graph they have in common,
and send each other those parts of the graph that the other
node is lacking.
Our prior work [23] presents optimised algorithms for

reconciling two nodes’ sets of updates via hash graphs. This
process can be very efficient because the number of heads is
typically very small: for example, with up to three heads (i.e.
three concurrently generated updates) and 256-bit hashes,
the entire set of updates delivered by a node can be sum-
marised in less than 100 bytes, regardless of how many up-
dates have occurred or how many nodes have been involved.

Moreover, causally ordered delivery is easy to achievewith
this hash graph: when a node receives new updates from
another node, it simply ensures that dependencies (identified
by predecessor hashes) are delivered before the updates that
depend on them. A Byzantine node may generate an update
with arbitrary predecessor hashes, including hashes that do
not resolve to any update. This is not a problem: it simply
results in the update with the missing dependency never
being delivered by correct nodes.

Byzantine nodes may add arbitrary vertices and edges to
the hash graph, including, for example, updates that seem to
have occurred far in the past. However – assuming they can-
not generate hash collisions – it is not possible for Byzantine
nodes to do anything that would prevent correct nodes from
delivering the same set of updates as they communicate. A
proof of this property appears in prior work [23]. Byzantine
nodes may attempt to cause a performance degradation by
generating a large number of concurrent updates, and hence
a large number of heads, or updates with a large number
of predecessor hashes, but these updates will not affect the
correctness of the algorithm.



Making CRDTs Byzantine Fault Tolerant PaPoC’22, April 5–8, 2022, RENNES, France

Hence, we can guarantee eventual delivery, requiring only
the unavoidable (Section 2.3) assumption that every correct
node can eventually communicate with every other correct
node, either directly or indirectly via other correct nodes.

3.3 Unique IDs
As highlighted in Section 2.4, many CRDTs require opera-
tions to have unique IDs (sometimes known as dots [1]). Most
CRDTs generate such IDs by giving each node or replica a
unique identifier, and combining that identifier with a per-
node counter or sequence number. Thismethod of generating
IDs only works with trusted nodes, since a Byzantine node
can easily generate duplicate IDs.
However, building upon the hash graph of updates, we

have a simple way of generating unique IDs that is not sus-
ceptible to Byzantine misbehaviour: the ID of an operation
is the hash of the update containing that operation. The ID
is therefore only known after the update has been encoded
as a byte string, but that is not a problem, since operation-
based CRDTs first generate an operation in a side-effect-free
manner and then apply it using an effector function [40]; the
byte string is known once the generator is finished, and the
ID only needs to be known by the effector.

If an update contains multiple operations or requires mul-
tiple IDs, the IDs within an update can be an integer 1, 2, . . .
concatenated with the update hash. A Byzantine node can-
not change this numbering without also changing the hash,
making it impossible to generate duplicate IDs. If one opera-
tion needs to reference the ID of another operation within
the same update, it can use this same integer (it cannot use
the hash since the hash is not yet known at the time when
the update is encoded as a byte string).

In CRDTs where the IDs need not satisfy any further prop-
erties besides uniqueness, it should be easy to switch to this
scheme. If there are further requirements on IDs, such as
ordering properties, further checks are needed as described
in Section 3.4.
The downside of using hashes as IDs is that they require

more space than other schemes. To avoid the storage cost of
explicitly materialising all of the hashes, it would be possible
to design a compression scheme that recomputes hashes
when necessary, and store only the information necessary
to perform this recomputation.

3.4 Checking validity of updates
If every possible update that a Byzantine node could generate
is valid, we are done. However, if it is possible for an update
to be rejected because it is invalid, ensuring convergence
also requires that all correct nodes agree on whether a given
update is valid or not, as discussed in Section 2.4.

The validity of an update u may depend on which updates
happened previously. Let Up be the set of updates that have
been delivered at node p immediately before delivering u,
and let Uq be the similar set at node q. We then need to

ensure that p and q make the same decision about whether
u is valid, even if Up , Uq .

One way of guaranteeing a consistent validity decision is
as follows: let before(u) ⊆ Up be the set of updates that can
be transitively reached through the predecessor hashes of u,
and its predecessors, etc. Even if nodesp andq have delivered
different sets of updates Up , Uq , the subset before(u) they
compute for some update u is guaranteed to be the same.

Therefore, we can safely decide whether update u is valid
by basing the decision only on the updates in before(u), and
not taking into account any updates that are not in before(u).
For example, say u references the ID of an element created
in a previous update, and u is only valid if that element
exists. Then we check whether the update that created this
ID exists within before(u); if so, u is valid. If the update that
created this ID is not in before(u), we reject u: even though
the element may exist at the local replica, we cannot be sure
that it will also exist at other replicas, and therefore it is
safest to reject u. Updates generated by correct nodes are
always valid under this scheme; only updates generated by
Byzantine nodes may be rejected.
When the validity criterion is the existence of some el-

ement, an alternative approach is to delay delivering an
update until some later time when the referenced element
comes into existence. As long as the existence of elements
is logically monotonic [2], i.e. elements can only be created
but not destroyed (e.g. by retaining tombstones of deleted
elements), this approach can also guarantee convergence: by
eventual delivery, every correct node will eventually deliver
the updated that created the element in question, and there-
fore every correct node will eventually be able to apply the
update that depended on the existence of this element.

As another example of a validity check, RGA [38] requires
that insertions have an ID that is not only unique, but also
obeys a total order that is consistent with causality (a Lam-
port timestamp [24] can be used). To check whether the ID
contained in an update u is valid, we take the maximum ID
appearing in any of the causal predecessors of u, and then
require the ID in u to be one greater than that maximum.

3.5 Adapting existing CRDT algorithms
I conjecture that the techniques listed here – generating
unique IDs based on the hashes of updates, and ensuring that
all correct nodes agree on whether an update is valid – are
sufficient to guarantee convergence in a Byzantine setting:
that is, any update that a Byzantine node might produce
will either be rejected by all correct nodes, or result in a
legitimate CRDT state update on all correct nodes (in the
sense that a non-Byzantine node may have generated the
same update). Moreover, most operation-based CRDTs can be
made Byzantine fault tolerant in this way. I leave a detailed
proof of this conjecture in the context of particular CRDT
algorithms for future work.



PaPoC’22, April 5–8, 2022, RENNES, France Martin Kleppmann

If authentication of updates is desired, i.e. if it is important
to know which node generated which update, then updates
can additionally be cryptographically signed. However, this
is not necessary for achieving Strong Eventual Consistency.

4 Related Work
The idea of referring to some data item using a cryptographic
hash of its content, also known as content addressing, is used
in many systems, including Git [13], BitTorrent [35], and
IPFS [7]. Similarly, hash graphs are widely used: in Git [13],
Merkle trees [29], blockchains [5], IPLD [37], and others [22].

However, there are fairly few attempts to provide Byzan-
tine fault tolerance for CRDTs, and to my knowledge none
that have the characteristics of the approach in this paper.
Zhao et al. [14, 46, 47] propose a scheme that requires 3f + 1
replicas to tolerate f Byzantine nodes (both among the
servers and among the users). ASPAS [41, 45] relies on a
Byzantine fault tolerant state machine replication protocol
such as BFT-SMaRt [8], again requiring 3f + 1 servers to
tolerate f Byzantine faults. The 3f + 1 assumption means
these protocols cannot be deployed in open peer-to-peer
systems, since they would be vulnerable to Sybil attacks [15].
In contrast, my approach makes no assumption about the
number of Byzantine nodes.

Van der Linde et al. [27] have different goals in their CRDT-
based system with untrusted nodes: their work is concerned,
for example, with ensuring that nodes correctly report their
causal dependencies, whereas my approach permits nodes
to generate arbitrary causal dependencies (since they do
not affect the eventual delivery or convergence properties).
Van der Linde et al.’s approach relies on trusted servers and
primarily focuses on rational clients (assuming clients will
deviate from the protocol only if this cannot be detected). If a
Byzantine replica behaves in a way that leaves cryptographic
evidence of faulty behaviour, that replica can be excluded
from the system, but it is unclear how the system recovers
from misbehaviour that has already occurred by the time
that replica is excluded.
The Matrix Event Graph [21] has been proposed as one

possible CRDT that can tolerate an arbitrary number of
Byzantine nodes; it represents a DAG to which vertices and
edges can only be added, similar to our hash graph. Jacob
et al. [20] suggest that it is also possible for other CRDTs
to tolerate an arbitrary number of Byzantine nodes using
hash graphs, but do not propose any particular algorithm.
Sanjuán et al. [39] also propose CRDTs based on hash graphs,
but do not address the problem of Byzantine nodes creating
invalid operations.

Merkle Search Tree [4] is a state-based CRDT for sets that
is able to tolerate any number of Byzantine nodes. It can be
regarded as a state-based counterpart to the operation-based
approach in this paper.

5 Conclusions and future work
This paper has shown how, in principle, operation-based
CRDT algorithms can be adapted to tolerate any number of
Byzantine faults while still guaranteeing Strong Eventual
Consistency. I hope that it will inspire further research into
Byzantine fault tolerant CRDTs.

Further work is required to demonstrate whether the tech-
niques presented here are indeed effective in the context of
particular CRDT algorithms, to prove their correctness in
the face of Byzantine nodes, and to measure the performance
impact of Byzantine fault tolerance.

Acknowledgments
Thank you to Heidi Howard, Geoffrey Litt, and Alberto Son-
nino for feedback on a draft of this paper. Martin Kleppmann
is supported by a Leverhulme Trust Early Career Fellowship,
the Isaac Newton Trust, Nokia Bell Labs, and crowdfund-
ing supporters including Ably, Adrià Arcarons, Chet Corcos,
Macrometa, Mintter, David Pollak, Prisma, RelationalAI, Soft-
wareMill, Talent Formation Network, and Adam Wiggins.

References
[1] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. 2017. Delta

state replicated data types. J. Parallel and Distrib. Comput. 111 (Aug.
2017), 162–173. https://doi.org/10.1016/j.jpdc.2017.08.003

[2] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Mar-
czak. 2011. Consistency Analysis in Bloom: a CALM and Collected
Approach. In 5th Biennial Conference on Innovative Data Systems Re-
search (CIDR 2011).

[3] Luc André, Stéphane Martin, Gérald Oster, and Claudia-Lavinia Ig-
nat. 2013. Supporting adaptable granularity of changes for massive-
scale collaborative editing. In 9th IEEE International Conference on
Collaborative Computing: Networking, Applications and Worksharing
(CollaborateCom 2013). ICST, 50–59. https://doi.org/10.4108/icst.
collaboratecom.2013.254123

[4] Alex Auvolat and François Taïani. 2019. Merkle Search Trees: Efficient
State-Based CRDTs in Open Networks. In 38th Symposium on Reliable
Distributed Systems (SRDS 2019). IEEE, 221–230. https://doi.org/10.
1109/srds47363.2019.00032

[5] Leemon Baird. 2016. The Swirlds hashgraph consensus algorithm: Fair,
fast, Byzantine fault tolerance. Technical Report TR-2016-01. Swirlds.
https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf

[6] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi,
Patrick McCorry, Sarah Meiklejohn, and George Danezis. 2019. SoK:
Consensus in the Age of Blockchains. In 1st ACM Conference on Ad-
vances in Financial Technologies (AFT 2019). ACM, 183–198. https:
//doi.org/10.1145/3318041.3355458

[7] Juan Benet. 2014. IPFS – Content Addressed, Versioned, P2P File
System. arXiv:1407.3561 [cs.NI] https://arxiv.org/abs/1407.3561

[8] Alysson Bessani, João Sousa, and Eduardo E. P. Alchieri. 2014. State
Machine Replication for the Masses with BFT-SMART. In 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN 2014). IEEE, 355–362. https://doi.org/10.1109/DSN.2014.43

[9] Gabriel Bracha. 1987. Asynchronous Byzantine agreement protocols.
Information and Computation 75, 2 (Nov. 1987), 130–143. https://doi.
org/10.1016/0890-5401(87)90054-x

https://doi.org/10.1016/j.jpdc.2017.08.003
https://doi.org/10.4108/icst.collaboratecom.2013.254123
https://doi.org/10.4108/icst.collaboratecom.2013.254123
https://doi.org/10.1109/srds47363.2019.00032
https://doi.org/10.1109/srds47363.2019.00032
https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf
https://doi.org/10.1145/3318041.3355458
https://doi.org/10.1145/3318041.3355458
https://arxiv.org/abs/1407.3561
https://arxiv.org/abs/1407.3561
https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.1016/0890-5401(87)90054-x
https://doi.org/10.1016/0890-5401(87)90054-x


Making CRDTs Byzantine Fault Tolerant PaPoC’22, April 5–8, 2022, RENNES, France

[10] John F. Buford and Heather Yu. 2010. Peer-to-Peer Networking and
Applications: Synopsis and Research Directions. In Handbook of Peer-
to-Peer Networking, Xuemin Shen, Heather Yu, John Buford, and Mur-
salin Akon (Eds.). Springer, 3–45. https://doi.org/10.1007/978-0-387-
09751-0_1

[11] Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. 2011. Intro-
duction to Reliable and Secure Distributed Programming (second ed.).
Springer.

[12] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup.
2001. Secure and Efficient Asynchronous Broadcast Protocols. In 21st
Annual International Cryptology Conference (CRYPTO 2001). Springer,
524–541. https://doi.org/10.1007/3-540-44647-8_31

[13] Scott Chacon and Ben Straub. 2014. Pro Git (second ed.). Apress.
https://git-scm.com/book/en/v2

[14] Hua Chai and Wenbing Zhao. 2014. Byzantine Fault Tolerance for
Services with Commutative Operations. In 2014 IEEE International
Conference on Services Computing (SCC 2014). IEEE, 219–226. https:
//doi.org/10.1109/SCC.2014.37

[15] John R. Douceur. 2002. The Sybil Attack. In International Workshop on
Peer-to-Peer Systems (IPTPS 2002). Springer, 251–260. https://doi.org/
10.1007/3-540-45748-8_24

[16] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus
in the Presence of Partial Synchrony. J. ACM 35, 2 (April 1988), 288–323.
https://doi.org/10.1145/42282.42283

[17] Victor B.F. Gomes, Martin Kleppmann, Dominic P. Mulligan, and Alas-
tair R. Beresford. 2017. Verifying strong eventual consistency in dis-
tributed systems. Proceedings of the ACM on Programming Languages
1, OOPSLA (Oct. 2017). https://doi.org/10.1145/3133933

[18] Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Yvonne-Anne
Pignolet, Dragos-Adrian Seredinschi, and Andrei Tonkikh. 2021. Dy-
namic Byzantine Reliable Broadcast. In 24th International Conference
on Principles of Distributed Systems (OPODIS 2020, Vol. 184). Schloss
Dagstuhl, 23:1–23:18. https://doi.org/10.4230/LIPIcs.OPODIS.2020.23

[19] Peter H. Hochschild, Paul Turner, Jeffrey C. Mogul, Rama Govindaraju,
Parthasarathy Ranganathan, David E. Culler, and Amin Vahdat. 2021.
Cores that don’t count. InWorkshop on Hot Topics in Operating Systems
(HotOS 2021). ACM, 9–16. https://doi.org/10.1145/3458336.3465297

[20] Florian Jacob, Saskia Bayreuther, and Hannes Hartenstein. 2021. On
Conflict-Free Replicated Data Types and Equivocation in Byzantine
Setups. arXiv:2109.10554 [cs.DC] https://arxiv.org/abs/2109.10554

[21] Florian Jacob, Carolin Beer, Norbert Henze, and Hannes Hartenstein.
2021. Analysis of the Matrix Event Graph Replicated Data Type. IEEE
Access 9 (Feb. 2021), 28317–28333. https://doi.org/10.1109/access.2021.
3058576

[22] Brent Byunghoon Kang, Robert Wilensky, and John Kubiatowicz. 2003.
The hash history approach for reconciling mutual inconsistency. In
23rd International Conference on Distributed Computing Systems (ICDCS
2003). IEEE, 670–677. https://doi.org/10.1109/ICDCS.2003.1203518

[23] Martin Kleppmann and Heidi Howard. 2020. Byzantine Eventual
Consistency and the Fundamental Limits of Peer-to-Peer Databases.
arXiv:2012.00472 [cs.DS] https://arxiv.org/abs/2012.00472

[24] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM 21, 7 (July 1978), 558–565. https:
//doi.org/10.1145/359545.359563

[25] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzan-
tine Generals Problem. ACM Transactions on Programming Languages
and Systems 4, 3 (July 1982), 382–401. https://doi.org/10.1145/357172.
357176

[26] João Leitão, José Pereira, and Luís Rodrigues. 2009. Gossip-Based
Broadcast. In Handbook of Peer-to-Peer Networking. Springer, 831–860.
https://doi.org/10.1007/978-0-387-09751-0_29

[27] Albert van der Linde, João Leitão, and Nuno Preguiça. 2020. Practical
Client-side Replication: Weak Consistency Semantics for Insecure

Settings. Proceedings of the VLDB Endowment 13, 11 (July 2020), 2590–
2605. https://doi.org/10.14778/3407790.3407847

[28] Xiao Lv, Fazhi He, Weiwei Cai, and Yuan Cheng. 2016. An efficient
collaborative editing algorithm supporting string-based operations. In
20th IEEE International Conference on Computer Supported Cooperative
Work in Design (CSCWD 2016). IEEE, 45–50. https://doi.org/10.1109/
cscwd.2016.7565961

[29] Ralph C. Merkle. 1987. A Digital Signature Based on a Conventional
Encryption Function. In A Conference on the Theory and Applications
of Cryptographic Techniques on Advances in Cryptology (CRYPTO 1987).
Springer, 369–378. https://doi.org/10.1007/3-540-48184-2_32

[30] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash
System. https://bitcoin.org/bitcoin.pdf

[31] Brice Nédelec, Pascal Molli, and Achour Mostefaoui. 2016. CRATE:
Writing Stories Together with our Browsers. In 25th International
World Wide Web Conference (WWW 2016). ACM, 231–234. https:
//doi.org/10.1145/2872518.2890539

[32] Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma. 2016.
Near Real-Time Peer-to-Peer Shared Editing on Extensible Data Types.
In 19th International Conference on Supporting Group Work (GROUP
2016). ACM, 39–49. https://doi.org/10.1145/2957276.2957310

[33] Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad Imine. 2006.
Data consistency for P2P collaborative editing. In ACM Conference on
Computer Supported Cooperative Work (CSCW 2006). ACM, 259–268.
https://doi.org/10.1145/1180875.1180916

[34] D. Stott Parker Jr., Gerald J Popek, Gerard Rudisin, Allen Stoughton,
Bruce J. Walker, Evelyn Walton, Johanna M. Chow, David Edwards,
Stephen Kiser, and Charles Kline. 1983. Detection of Mutual Incon-
sistency in Distributed Systems. IEEE Transactions on Software Engi-
neering SE-9, 3 (May 1983), 240–247. https://doi.org/10.1109/tse.1983.
236733

[35] Johan Pouwelse, Paweł Garbacki, Dick Epema, and Henk Sips. 2005.
The BitTorrent P2P File-Sharing System: Measurements and Analysis.
In 4th International Workshop on Peer-to-Peer Systems (IPTPS 2005).
205–216. https://doi.org/10.1007/11558989_19

[36] Nuno Preguiça, Joan Manuel Marques, Marc Shapiro, and Mihai Letia.
2009. A Commutative Replicated Data Type for Cooperative Editing.
In 29th IEEE International Conference on Distributed Computing Systems
(ICDCS 2009). IEEE, 395–403. https://doi.org/10.1109/icdcs.2009.20

[37] Protocol Labs. [n. d.]. IPLD. https://ipld.io/
[38] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. 2011.

Replicated abstract data types: Building blocks for collaborative appli-
cations. J. Parallel and Distrib. Comput. 71, 3 (March 2011), 354–368.
https://doi.org/10.1016/j.jpdc.2010.12.006

[39] Héctor Sanjuán, Samuli Pöyhtäri, Pedro Teixeira, and Ioan-
nis Psaras. 2020. Merkle-CRDTs: Merkle-DAGs meet CRDTs.
arXiv:2004.00107 [cs.NI] https://arxiv.org/abs/2004.00107

[40] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
2011. Conflict-Free Replicated Data Types. In 13th International Sym-
posium on Stabilization, Safety, and Security of Distributed Systems (SSS
2011). Springer, 386–400. https://doi.org/10.1007/978-3-642-24550-
3_29

[41] Ali Shoker, Houssam Yactine, and Carlos Baquero. 2017. As Secure as
Possible Eventual Consistency: Work in Progress. In 3rd International
Workshop on Principles and Practice of Consistency for Distributed Data
(PaPoC 2017). ACM, Article 5. https://doi.org/10.1145/3064889.3064895

[42] Albert van der Linde, Pedro Fouto, João Leitão, Nuno Preguiça, San-
tiago Castiñeira, and Annette Bieniusa. 2017. Legion: Enriching
Internet Services with Peer-to-Peer Interactions. In 26th Interna-
tional Conference on World Wide Web (WWW 2017). ACM, 283–292.
https://doi.org/10.1145/3038912.3052673

[43] Stéphane Weiss, Pascal Urso, and Pascal Molli. 2007. Wooki: A P2P
Wiki-Based Collaborative Writing Tool. In 8th International Conference

https://doi.org/10.1007/978-0-387-09751-0_1
https://doi.org/10.1007/978-0-387-09751-0_1
https://doi.org/10.1007/3-540-44647-8_31
https://git-scm.com/book/en/v2
https://doi.org/10.1109/SCC.2014.37
https://doi.org/10.1109/SCC.2014.37
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/3133933
https://doi.org/10.4230/LIPIcs.OPODIS.2020.23
https://doi.org/10.1145/3458336.3465297
https://arxiv.org/abs/2109.10554
https://arxiv.org/abs/2109.10554
https://doi.org/10.1109/access.2021.3058576
https://doi.org/10.1109/access.2021.3058576
https://doi.org/10.1109/ICDCS.2003.1203518
https://arxiv.org/abs/2012.00472
https://arxiv.org/abs/2012.00472
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1007/978-0-387-09751-0_29
https://doi.org/10.14778/3407790.3407847
https://doi.org/10.1109/cscwd.2016.7565961
https://doi.org/10.1109/cscwd.2016.7565961
https://doi.org/10.1007/3-540-48184-2_32
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1145/2872518.2890539
https://doi.org/10.1145/2872518.2890539
https://doi.org/10.1145/2957276.2957310
https://doi.org/10.1145/1180875.1180916
https://doi.org/10.1109/tse.1983.236733
https://doi.org/10.1109/tse.1983.236733
https://doi.org/10.1007/11558989_19
https://doi.org/10.1109/icdcs.2009.20
https://ipld.io/
https://doi.org/10.1016/j.jpdc.2010.12.006
https://arxiv.org/abs/2004.00107
https://arxiv.org/abs/2004.00107
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1145/3064889.3064895
https://doi.org/10.1145/3038912.3052673


PaPoC’22, April 5–8, 2022, RENNES, France Martin Kleppmann

on Web Information Systems Engineering (WISE 2007). Springer, 503–
512. https://doi.org/10.1007/978-3-540-76993-4_42

[44] Stéphane Weiss, Pascal Urso, and Pascal Molli. 2009. Logoot: A
Scalable Optimistic Replication Algorithm for Collaborative Edit-
ing on P2P Networks. In 29th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS 2009). IEEE, 404–412. https:
//doi.org/10.1109/ICDCS.2009.75

[45] Houssam Yactine, Ali Shoker, and Georges Younes. 2021. ASPAS: As
Secure as Possible Available Systems. In 21st IFIP WG 6.1 International
Conference on Distributed Applications and Interoperable Systems (DAIS

2021). Springer, 57–73. https://doi.org/10.1007/978-3-030-78198-9_4
[46] Wenbing Zhao and Mamdouh Babi. 2013. Byzantine fault tolerant col-

laborative editing. In IET International Conference on Information and
Communications Technologies (IETICT 2013). Institution of Engineering
and Technology, 233–240. https://doi.org/10.1049/cp.2013.0057

[47] Wenbing Zhao, Mamdouh Babi, William Yang, Xiong Luo, Yueqin
Zhu, Jack Yang, Chaomin Luo, and Mary Yang. 2016. Byzantine Fault
Tolerance for Collaborative Editing with Commutative Operations. In
IEEE International Conference on Electro Information Technology (EIT
2016). IEEE, 246–251. https://doi.org/10.1109/eit.2016.7535248

https://doi.org/10.1007/978-3-540-76993-4_42
https://doi.org/10.1109/ICDCS.2009.75
https://doi.org/10.1109/ICDCS.2009.75
https://doi.org/10.1007/978-3-030-78198-9_4
https://doi.org/10.1049/cp.2013.0057
https://doi.org/10.1109/eit.2016.7535248

	Abstract
	1 Introduction
	2 Background and system model
	2.1 System model: nodes and network links
	2.2 Correctness of CRDTs
	2.3 Eventual delivery with Byzantine nodes
	2.4 Convergence with Byzantine nodes

	3 Tolerating Byzantine faults
	3.1 Constructing a hash graph
	3.2 Ensuring eventual delivery
	3.3 Unique IDs
	3.4 Checking validity of updates
	3.5 Adapting existing CRDT algorithms

	4 Related Work
	5 Conclusions and future work
	Acknowledgments
	References

