
104 COMMUNICATIONS OF THE ACM | NOVEMBER 2022 | VOL. 65 | NO. 11

practice

IT IS WITH great pride and no small amount of
excitement that I announce the reboot of Research for
Practice. Beginning at its inception in 2016, Research
for Practice brought both seminal and cutting-edge
research—via careful curation by experts in academia—
within easy reach for practitioners who are too busy
building things to manage the deluge of scholarly
publications. We believe the series succeeded in its
stated goal of sharing “the joy and utility of reading
computer science research” between academics and
their counterparts in industry. We are delighted to
rekindle the flame after a three-year hiatus.

For this first installment, we invited Martin
Kleppmann, research fellow and affiliated lecturer
at the University of Cambridge, to curate a selection
of recent research papers in a perennially interesting
domain: convergent or “eventual consistent”
replicated systems. His expert analysis circles the

topic, viewing it through the lens of
recent work in four distinct research
domains: systems, programming lan-
guages, human-computer interaction,
and data management. Along the way,
readers will be exposed to a variety
of data structures, algorithms, proof
techniques, and programming models
(each described in terms of a distinct
formalism), all of which attempt to
make programming large-scale dis-
tributed systems easier. I hope you en-
joy his column as much as I did.

—Peter Alvaro

Peter Alvaro is an associate professor of computer
science at the University of California Santa Cruz,
where he leads the Disorderly Labs research group
(disorderlylabs.github.io).

In distributed systems, there are—
broadly speaking—two approaches to
data consistency: consensus or conver-
gence. The consensus approach can be
implemented with algorithms such as
Paxos or Raft, and it ensures strong con-
sistency, which means making the dis-

Research for
Practice:
Convergence

DOI:10.1145/3563901

 Article development led by
queue.acm.org

The return of a popular feature that shares the
joy and utility of reading CS research between
academics and their counterparts in industry.

BY MARTIN KLEPPMANN

https://dx.doi.org/10.1145/3563901

NOVEMBER 2022 | VOL. 65 | NO. 11 | COMMUNICATIONS OF THE ACM 105

I
M

A
G

E
 B

Y
 B

E
N

 S
L

A
T

E
R

tributed system appear as if it were not
distributed (linearizable) and as if there
were no concurrency (serializable). This
approach makes the system easy to use,
but it comes at the cost of performance,
scalability, and the kinds of faults that
can be tolerated, because every update
needs to wait for a reply from other
nodes before it can complete.

The alternative approach, conver-
gence, is more commonly known as
eventual consistency. In this model, dif-
ferent nodes are allowed to process up-
dates independently, without waiting
for each other. This is typically faster,
more robust, and more scalable, but
it leads to nodes having temporar-
ily inconsistent versions of the data. As
those nodes communicate with each
other, those inconsistencies must be
resolved—that is, they should converge
toward the same state.

Convergence is such a useful idea
that different research communities
have developed several ways of achiev-
ing it. This article looks at four varia-

tions on the theme of convergence,
drawn from four areas of computer sci-
ence. I have selected five recent articles
that provide introductions to each of
the techniques for convergence.

Conflict-Free Replicated Data Types
N. Preguiça.
Conflict-free Replicated Data Types: An
Overview (June 2018); https://arxiv.org/
abs/1806.10254

A conflict-free replicated data type
(CRDT) is a data structure that can be
modified concurrently on several nodes
and provides a built-in algorithm for
merging those updates back together
again. CRDTs have been created for a
variety of data types, such as sets, lists,
key-value maps, graphs, counters, and
JSON (JavaScript Object Notation) trees.
They are used in server-side databases
such as Microsoft’s Azure CosmosDB
and Redis Enterprise, as well as client-
side libraries for collaboration software
such as Automerge and Yjs.

CRDTs ensure convergence through

commutativity—that is, whenever two
nodes have processed the same up-
dates, they will be in the same state,
even if the updates arrived in a differ-
ent order. They achieve this property
by adding some metadata to the actual
data structure: For example, many al-
gorithms associate a unique ID with
each operation and use that ID later to
refer to parts of the data structure. This
makes the operations unambiguous
when there are concurrent updates.
By carefully managing this metadata,
CRDTs ensure concurrent operations
commute, enabling different replicas
to merge their state and converge.

Operational Transformation
D. Sun, C. Sun, A. Ng, and W. Cai.
Real differences between OT and CRDT in
correctness and complexity for consistency
maintenance in co-editors. In Proceedings of
the ACM on Human-Computer Interaction 4,
CSCW1, article 21, (May 2020), 1–30; https://
dl.acm.org/doi/10.1145/3392825

Operational transformation (OT) is

106 COMMUNICATIONS OF THE ACM | NOVEMBER 2022 | VOL. 65 | NO. 11

practice

a monotonically growing set of up-
dates); with such programs, the in-
puts can arrive in any order without
affecting the output. On the other
hand, managing access to a limited
resource is a nonmonotonic opera-
tion and therefore requires coordina-
tion among the nodes in the system.

An alternative but related approach
is to use the concept of invariant con-
fluence. An invariant is confluent if two
nodes can independently make up-
dates that preserve the invariant, and
you can be sure that the invariant con-
tinues to be satisfied when you merge
the updates. Say you have an invariant
such as “no seat in the theater is sold to
more than one person.” This example
is not confluent because one node may
sell an empty seat (which is valid), an-
other node may independently sell the
same seat (also valid), but the merge of
the two updates violates the invariant.
On the other hand, a referential integ-
rity (foreign key) constraint is conflu-
ent if you only insert but don’t delete. If
all invariants are confluent, an applica-
tion can be coordination-free, whereas
nonconfluent invariants require coor-
dination.

Conclusion
An interesting detail about these four
approaches is that they have arisen
from totally different areas of com-
puter science: CRDTs come from the
operating systems community, OT
from human-computer interaction,
MRDTs from programming languag-
es, and CALM/invariant confluence
from databases. Each community
has applied its own style of thinking
to the idea of convergence, which
sometimes leads to misunderstand-
ings of each other’s work, especially
as the different communities don’t
always talk to each other as much as
you might hope. Taken together, how-
ever, this diverse set of perspectives
gives us a stronger set of tools to apply
to real-world problems.

Martin Kleppmann is a research fellow at TU Munich,
Germany, where he works on distributed systems security
and collaborative software. Previously, he was a research
fellow at the University of Cambridge, U.K. He has worked
as a software engineer and entrepreneur at two startups
and developed large-scale data infrastructure at LinkedIn.
He is the author of Designing Data-Intensive Applications
(O’Reilly Media).

Copyright held by author/owner.
Publication rights licensed to ACM.

most used in real-time collaborative edi-
tors such as Google Docs, and it ensures
whenever several users concurrently
update the document, they converge to
the same state. For plain text, the data
structure is a linear sequence of charac-
ters that can be updated by inserting or
deleting characters at any position. This
idea has also been generalized to rich
text, spreadsheets, and other file types.
Such applications can be implemented
with CRDTs as well, but many existing
collaboration products use OT. The OT
algorithm allows concurrent operations
to be reordered through rules that are
more restrictive than the general com-
mutativity used by CRDTs.

OT is a much older technique than
CRDTs; in fact, CRDTs were created
in response to several flawed OT al-
gorithms that were published in the
1990s and early 2000s. Today, both OT
and CRDTs are widely used, and the
trade-offs between them are nuanced.
The suggested article is written by pro-
ponents of the OT approach, and its
critique of CRDTs is unusually polemic
for an academic paper. Even though I
do not agree with everything the au-
thors say, it’s interesting to follow the
spectacle of a heated debate.

Mergeable Replicated Data Types
G. Kaki, S. Priya, KC Sivaramakrishnan, and S.
Jagannathan.
Mergeable replicated data types. In
Proceedings of the ACM Conference on
Programming Languages 3, OOSPLA, article
154 (Oct. 2019), 1–29; https://dl.acm.org/
doi/10.1145/3360580

Mergeable replicated data types
(MRDTs) is an alternative take on con-
vergence that is based on ideas from
version-control systems such as Git. In
Git, if two users independently edit the
same part of a file, a user must resolve
the merge conflict manually, whereas
CRDTs and OT automatically merge
concurrent updates without requiring
any user interaction. MRDTs combine
CRDT/OT-like automatic merging with
Git-like version control.

MRDTs are data structures like
CRDTs. The difference is that while
CRDTs provide a function for merging
one node’s state with another, MRDTs
merge two branches of a version histo-
ry by not only looking at the latest state
on each branch, but also considering
the most recent common ancestor

state of the two branches (that is, the
commit after which the two branches
diverged). The MRDT can therefore
see what has changed on each of the
branches since the common ancestor,
which allows it to maintain less meta-
data than a CRDT. Instead, it must
maintain the commit history graph,
which some CRDTs can avoid. MRDT
algorithms exist for counters, queues,
sets, maps, binary trees, and other data
structures.

Consistency as Logical Monotonicity
(CALM) and Invariant Confluence
J.M. Hellerstein and P. Alvaro.
Keeping CALM: When distributed consistency is
easy. Commun. ACM 63, 9, (Sept. 2020), 72–81;
https://dl.acm.org/doi/10.1145/3369736
P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi,
J.M. Hellerstein, and I. Stoica.
Coordination avoidance in database systems.
In Proceedings of the VLDB Endowment 8, 3
(2014), 185–196; http://www.vldb.org/pvldb/
vol8/p185-bailis.pdf

The CRDT/OT/MRDT approaches are
great in the situations for which they
have been designed, but they are not
sufficient to implement every type of
software. In particular, if you need
to manage some kind of limited re-
source—for example, to ensure that
customers do not spend more money
than they have in their accounts, or
that you do not sell the same seat in
a theater or airplane to more than
one person, or that you do not prom-
ise the last in-stock item in the ware-
house to more than one buyer—then
you cannot just let each node update
its state independently from other
nodes. Some sort of coordination is
required to decide which transaction
goes through and who gets the seat or
the last item in stock, because opera-
tions that consume the resource are
mutually exclusive. This coordina-
tion could be implemented as a con-
sensus algorithm or a locking proto-
col, for example.

The question then is: What general
principle tells us when to use CRDTs
and friends, and when stronger guar-
antees such as consensus are needed?
The CALM theorem provides a precise
answer to this question: Coordination
can be avoided if the program is logi-
cally monotonic. CRDT/OT/MRDT al-
gorithms are all ways of writing logi-
cally monotonic programs (the state
of a data structure is determined by

