A highly-available move operation for replicated
trees

Martin Kleppmann, Dominic P. Mulligan, Victor B. F. Gomes, and Alastair R. Beresford

Abstract—Replicated tree data structures are a fundamental building block of distributed filesystems, such as Google Drive and
Dropbox, and collaborative applications with a JSON or XML data model. These systems need to support a move operation that allows
a subtree to be moved to a new location within the tree. However, such a move operation is difficult to implement correctly if different
replicas can concurrently perform arbitrary move operations, and we demonstrate bugs in Google Drive and Dropbox that arise with
concurrent moves. In this paper we present a CRDT algorithm that handles arbitrary concurrent modifications on trees, while ensuring
that the tree structure remains valid (in particular, no cycles are introduced), and guaranteeing that all replicas converge towards the
same consistent state. Our algorithm requires no synchronous coordination between replicas, making it highly available in the face of
network partitions. We formally prove the correctness of our algorithm using the Isabelle/HOL proof assistant, and evaluate the
performance of our formally verified implementation in a geo-replicated setting.

Index Terms—Conflict-free Replicated Data Types (CRDTs), formal verification, distributed filesystems, distributed collaboration

1 INTRODUCTION

ANY applications use a tree-structured data model.

Most filesystems are trees: directories are branch
nodes, files are leaf nodes (we discuss hardlinks in §3.7).
XML and JSON documents are also trees, and they are
used in many applications to represent e.g. rich text (a tree
of paragraphs, lists, figures, sections, etc.), vector graphics,
CAD drawings, and many other types of data. Typically,
a graphical user interface allows a user to edit this infor-
mation interactively, resulting in updates to the underlying
XML/JSON structure: adding or deleting nodes in the tree,
and moving nodes from one position in the tree to another.

In distributed filesystems and collaborative multi-user
software, this tree is replicated across multiple nodes. If
users attempt to update the tree concurrently on different
replicas, concurrency control is required. However, standard
techniques such as two-phase locking require synchronous
coordination between replicas. If the software is running
on mobile devices with unreliable network connectivity,
an application based on synchronous coordination becomes
unresponsive during network interruptions, leaving users
unable to work while they are offline.

If we want to allow offline work, we must allow the
system to continue processing read and write requests even
in the presence of arbitrary network partitions; in other
words, we require high availability and partition-tolerance
in the sense of the CAP theorem [1]. We can achieve this
goal by using optimistic replication [2], which means that
any replica can make changes to the data without waiting
for communication with any other replicas; updates made
while disconnected are sent to other replicas later when

e M. Kleppmann and A.R. Beresford are with the University of Cambridge.
e D.P. Mulligan is with Arm Research, Cambridge, UK.

e V.B.F. Gomes is with Google (this work was done while at the University
of Cambridge).

a network connection is available. Besides allowing the
system to tolerate network partitions, this approach can also
improve performance for end users because the response
time of a user request is independent of any network latency.
Dropbox and Google Drive are widely-deployed exam-
ples of optimistically replicated filesystems: they run a dae-
mon on the user’s machine that watches a designated direc-
tory for changes. The user can read and arbitrarily modify
the files on their local disk, even while their computer
is offline. However, when the filesystem is concurrently
updated on different computers, Google Drive and Dropbox
exhibit bugs in their concurrency control, as we show in §2.
In this paper we introduce a novel algorithm for han-
dling concurrent updates to a replicated tree, such as an
XML document or filesystem. It allows replicas to manipu-
late the tree by creating nodes, deleting nodes, or moving
subtrees to a new location within the tree. We rule out
bugs like those in Google Drive by formally proving our
algorithm correct using the Isabelle/HOL proof assistant.
Our algorithm supports optimistic replication, allowing
replicas to temporarily diverge as they are updated, and
ensuring that they always converge towards a consistent
state. It is an example of a Conflict-free Replicated Data Type
or CRDT [3], and it guarantees a consistency model called
strong eventual consistency [3], [4]. Our contributions are:

o We define a Conflict-free Replicated Data Type for
trees that allow move operations without any coordi-
nation between replicas such as locking or consen-
sus. As discussed in §2.3, this has previously been
thought to be impossible to achieve [5], [6].

e We formalise the algorithm using Isabelle/HOL [7],
a proof assistant based on higher-order logic, and
obtain a computer-checked proof of correctness. In
particular, we prove that arbitrary concurrent modi-
fications to the tree can be merged such that all repli-
cas converge to a consistent state, while preserving

the tree structure. Our proof technique can also be
applied to other distributed systems, making it of
independent interest.

o To demonstrate its practical viability, we extract a
formally verified Scala implementation of our algo-
rithm from Isabelle. We compare its performance to
a hand-optimised (not formally verified) implemen-
tation and to classic state machine replication. In
a geo-replicated setup across three continents, state
machine replication has approximately four times
higher throughput than our algorithm, but our al-
gorithm has up to 100,000 times lower latency.

e We perform experiments with Dropbox and Google
Drive, and show that they exhibit problems that
would be prevented by our algorithm.

2 WHY A MOVE OPERATION IS HARD

Applications that rely on a tree data model often need to
move a node from one location to another location within
the tree, such that all of its children move along with it:

e In a filesystem, any file or directory can be moved
to a different parent directory. Moreover, renaming a
file or directory is equivalent to moving it to a new
name without changing its parent directory.

e In arich text editor, a paragraph can be turned into
a bullet point. In the XML tree this corresponds to
creating new list and bullet point nodes, and then
moving the paragraph node inside the bullet point.

e In graphics software, grouping two objects corre-
sponds to creating a new group node, and then
moving the two objects into the new group node.

As these operations are so common, it is not obvious why a
move operation should be difficult in a replicated setting. In
this section we demonstrate some problems that arise with
replicated trees, before proceeding to our solution in §3.

2.1 Concurrent moves of the same node

The first difficulty arises when the same node is concur-
rently moved into different locations on different replicas.
This scenario is illustrated in Figure 1, where replica 1
moves node A to be a child of B, while concurrently
replica 2 moves A to be a child of C. After the replicas
communicate, what should the merged state of the tree be?

If a move operation is implemented by deleting the
moved subtree from its old location, and then re-creating
it at the new location, the merged state will be as shown in
Figure 1a: the concurrent moves will duplicate the moved
subtree, since each move independently recreates the sub-
tree in each destination location. We believe that this du-
plication is undesirable, since subsequent edits to nodes in
the duplicated subtree will apply to only one of the copies.
Two users who believe they are collaborating on the same
file may in fact be editing two different copies, which will
then become inconsistent with each other. In the rich text
editor and graphics software examples, such duplication is
also undesirable.

Another possible resolution is for the destination loca-
tions of both moves to refer to the same node, as shown in

2

Figure 1b. However, the result is a DAG, not a tree. POSIX
filesystems do not allow this outcome, since they do not
allow hardlinks to directories.

In our opinion, the only reasonable outcomes are those
shown in Figure 1c and 1d: the moved subtree appears
either in replica 1’s destination location or in replica 2’s
destination location, but not in both. Which one of these
two is picked is arbitrary, due to the symmetry between
the two replicas. The “winning” location could be picked
based on a timestamp in the operations, similarly to the “last
writer wins” conflict resolution method of Thomas’s write
rule [8]. The timestamp in this context need not come from
a physical clock; it could also be logical, such as a Lamport
timestamp [9].

We tested this scenario with file sync products Dropbox
and Google Drive by concurrently moving the same direc-
tory to two different destination directories.! Dropbox ex-
hibited the undesirable duplication behaviour of Figure 1a,
while the outcome on Google Drive was as in Figure 1c/d.

2.2 Moving a node to be a descendant of itself

On a filesystem, the destination directory of a move op-
eration must not be a subdirectory of the directory being
moved. For example, if b is a subdirectory of a, then the
Unix shell command mv a a/b/ will fail with an error.
This restriction is required because allowing this operation
would introduce a cycle into the directory graph, and so the
filesystem would no longer be a tree. Any tree data structure
that supports a move operation must handle this case.

In an unreplicated tree it is easy to prevent cycles being
introduced: if the node being moved is an ancestor of the
destination node, the operation is rejected. However, in a
replicated setting, different replicas may perform operations
that are individually safe, but whose combination leads to
a cycle. One such example is illustrated in Figure 2. Here,
replica 1 moves B to be a child of A, while concurrently
replica 2 moves A to be a child of B. As each replica
propagates its operation to the other replica, a careless im-
plementation might end up in the state shown in Figure 2a:
A and B have formed a cycle, detached from the tree.

Another possible outcome is shown in Figure 2b: the
nodes involved in the concurrent moves (and their children)
could be duplicated, so that both “A as a child of B” and
“B as a child of A” can exist in the tree. However, such
duplication is undesirable for the same reasons as in §2.1.

In our opinion, the best way of handling the conflicting
operations of Figure 2 is to choose either Figure 2c or 2d:
that is, either the result of applying replica 1’s operation and
ignoring replica 2’s operation, or vice versa. Like in §2.1, the
winning operation can be picked based on a timestamp.

As before, we tested this scenario with Google Drive
and Dropbox. In Google Drive, one replica was able to
successfully sync with the server, while the other replica
displayed the “unknown error” message shown in Figure 3.

1. Experiment setup: we installed the official Mac OS clients for
Dropbox and Google Drive on two computers, logged into the same
Dropbox/Google accounts, and configured them to sync a directory
on the local filesystem. To test concurrent operations, we disconnected
both computers from the Internet, performed a move operation on the
local filesystem of each computer, then reconnected and waited for
them to sync.

Replica 1:

Replica 2:

root
root Move A to be /N
N a child of B B C
A C > | A ?
/ I\ A VoA
ay az as VRN Vo 8
ar az as P
vy 0.8
,,)Eg
AN
root s\ e g
root Move A to be / N\ ,’ “ 8
PN a child of C B C | V
A C | L ?
VAR A
a1 as as /7 I\
ap a2 ag

(a) root root ()
/7 N\
B C B C
I I N/
A Al A
/IN /IN VLN
ayazazajabal || a1 a2 ag
(c) root root (d)
/7 N\ /7 N\
B C B C
| |
A A
VAL VAN
ap a2 asg a1 az as

Fig. 1. Replica 1 moves A to be a child of B, while concurrently replica 2 moves the same node A to be a child of C. Boxes (a) to (d) show possible
outcomes after the replicas have communicated and merged their states.

Replica 1:

Replica 2:

root Move B to be root
7N a child of A |
A B A T A U
I VRN v
C C \ 1 8
Vo =}
vy 5
,, VR
N3
root K g é
root Move A to be l K V8
VAN a child of B B Ly
A B | 1 U
| A
C |
C

(@) root root (b)
VRN
A B’
A /\ [
7N B C A
B C |
Cl
(©) root root (d)
| |
A B
VAN |
B C A
|
C

Fig. 2. Initially, nodes A and B are siblings. Replica 1 moves B to be a child of A, while concurrently replica 2 moves A to be a child of B. Boxes
(a) to (d) show possible outcomes after the replicas have communicated and merged their states.

Backup and Sync

Can't sync 2 files:

An unknown error occurred.

B Download Error - My Drive/experiment/folder-b

B Upload Error - /Users/martin/Google Drive/experiment/folder-a

Can't remove files with changes pending. Try again after sync is complete.

Fig. 3. Error message produced by Google Drive Backup and Sync on Mac OS as a result of performing the operations shown in Figure 2, indicating
a bug in the underlying replication algorithm.

The replica in an error state refused to sync the conflicting
directory, and its filesystem state remained permanently
inconsistent with the other replica. This error state persisted
until the directories on the erroring replica were manually
moved to match the state of the other replica. We have
reported this bug to Google. On the other hand, Dropbox
exhibited the duplication behaviour shown in Figure 2b.

23

Najafzadeh et al. [5], [6] previously implemented a repli-
cated filesystem with a move operation, and analysed the
case of concurrent move operations introducing a cycle.
Using the CISE proof tool [10], [11] the authors confirm
that it is not sufficient for the replica that generates a move
operation to check whether the operation introduces a cycle:
like in Figure 2, two concurrent operations may be safe
individually, but introduce a cycle when combined.

Najafzadeh et al. propose two solutions to this problem:
either to duplicate tree nodes, as in Figure 2b, or to execute
a synchronous locking protocol that prevents two move
operations from concurrently modifying the same part of
the tree. The downside of a locking protocol is that the
move operation is no longer highly available in the presence
of network partitions, since it must wait for synchronous
communication with other replicas or a lock server.

While these solutions are valid, the authors go on to
claim that “no file system can support an unsynchronised
move without anomalies, such as loss or duplication” [6].
We refute that claim in this paper: our algorithm does
not perform any locking, coordination or synchronisation
among replicas, but it nevertheless ensures that the tree
invariants are always satisfied (in particular, it never in-
troduces cycles), and it never duplicates or loses any tree
nodes. To our knowledge, our algorithm is the first to pro-
vide all of these properties simultaneously. We give a precise
specification of our algorithm’s consistency properties in §4.

Is a highly-available move operation impossible?

3 THE REPLICATED TREE ALGORITHM

We now introduce our algorithm for a replicated tree that
supports a move operation. We model each replica as a state
machine that transitions from one state to the next by apply-
ing an operation. The algorithm is executed independently
on each replica with no shared memory between replicas.

When the user wants to make a change to the tree, they
generate an operation and apply it to their local replica. Ev-
ery operation is also asynchronously sent over the network
to all other replicas, and applied by every remote replica us-
ing the same algorithm as for local operations. A replica may
communicate directly with any other replica. The network
may arbitrarily delay or reorder messages, but we assume
that an underlying network protocol detects and retransmits
lost messages, and suppresses duplicates. We do not assume
any central server or consensus protocol. Any number of
replicas may fail by crashing, and any non-crashed subset
of replicas can continue executing operations.

The key consistency property of our algorithm is conver-
gence: that is, whenever any two replicas have applied the
same set of operations, then they must be in the same state—
even if the operations were applied in a different order

4

on different replicas. We prove this in §4 by showing that
applying operations using our algorithm is commutative.

Figure 4 gives the full source code for our algorithm
in the Isabelle/HOL language [7]. We choose this language
because it combines the conciseness of pseudocode with the
precision of mathematical notation. It supports formal rea-
soning, allowing us to prove the correctness of the algorithm
(84), and it can be exported to Scala, Haskell, or OCaml.

In this section we walk through the code step by step,
explaining the Isabelle/HOL syntax as we encounter it.
Additional background documentation is available [12].

3.1 Operations and trees

We allow the tree to be updated in three ways: by creating
a new child of any parent node, by deleting a node, or by
moving a node to be a child of a new parent. However,
all three types of update can be represented by a move
operation. To create a node, we generate a fresh ID for that
node, and issue an operation to move this new ID to be
a child of its desired parent; the node is then implicitly
created. We also designate as “trash” some node ID that
does not exist in the tree; then we can delete a node by
moving it to be a child of the trash. Node creation and
deletion are discussed further in §3.6.

Thus, we define one kind of operation: Move t p m ¢
(Figure 4, lines 1-5). A move operation is a 4-tuple consisting
of a timestamp t of type 't, a parent node ID p of type ',
a metadata field m of type ‘m, and a child node ID ¢ of
type n. Here, 't, 'n and 'm are type variables that can be
replaced with arbitrary types; we only require that node
identifiers 'n are globally unique (e.g. UUIDs); timestamps '
need to be globally unique and totally ordered (e.g. Lamport
timestamps [9]).

The meaning of an operation Move ¢ p m c is that at time £,
the node with ID c is moved to be a child of the parent node
with ID p. The operation does not specify the old location
of c; the algorithm simply removes ¢ from wherever it is
currently located in the tree, and moves it to p. If ¢ does not
currently exist in the tree, it is created as a child of p.

The metadata field m in a move operation allows ad-
ditional information to be associated with the parent-child
relationship of p and c. For example, in a filesystem, the par-
ent and child are the inodes of a directory and a file within
it, respectively, and the metadata contains the filename of
the child. Thus, a file with inode ¢ can be renamed by
performing a Move t p m ¢, where the new parent directory
p is the inode of the existing parent (unchanged), but the
metadata m contains the new filename.

When users want to make changes to the tree on their
local replica, they generate new Move t p m c operations
for these changes, and apply these operations using the
algorithm described in the rest of this section.

We can represent the tree as a set of (parent, meta, child)
triples, denoted in Isabelle/HOL as ('t x ‘m x 'n) set. When
we have (p, m, ¢) € tree, that means c is a child of p in the tree,
with associated metadata m. Given a tree, we can construct
a new tree’ in which the child c is moved to a new parent p,
with associated metadata m, as follows:

tree’ = {(p’, m’, ¢’) € tree. ¢’ # ¢} U {(p, m, 0)}

© ®© N o o K~ W N =

datatype ('t, n, 'm) operation
= Move (move_time: 't)
(move_parent: 'n)
(move_meta: 'm)
(move_child: 'n)

datatype ('t, 'n, 'm) log_op
= LogMove (log_time: 't)
(old_parent: ('n x 'm) option)
(new_parent: 'n)
(log_meta: 'm)
(log_child: 'n)

type_synonym (’t, 'n, 'm) state = ('t, 'n, 'm) log_op list x ('n x 'm x 'n) set

definition get_parent :: ('n x 'm x 'n) set = n = ('n x 'm) option where
get_parent tree child =
if 3 lparent. Imeta. (parent, meta, child) € tree then
Some (THE (parent, meta). (parent, meta, child) € tree)
else None

inductive ancestor :: ('n x 'm x 'n) set = 'n = 'n = bool where
[(parent, meta, child) € tree] = ancestor tree parent child |
[(parent, meta, child) € tree; ancestor tree anc parent] = ancestor tree anc child

fun do_op :: ('t, 'n, 'm) operation x ('n x 'm x 'n) set = ('t, 'n, 'm) log_op x ('n x 'm x 'n) set where

do_op (Move t newp m c, tree) =
(LogMove t (get_parent tree c) newp m c,
if ancestor tree c newp V ¢ = newp then tree
else {(p/, m’, ¢’) € tree. ¢’ # ¢} U {(newp, m, c)})

fun undo_op :: ('t, 'n, 'm) log_op x (n x 'm x 'n) set = ('n x 'm x 'n) set where
undo_op (LogMove t None newp m c, tree) = {(p’, m’, c’) € tree. ¢’ # ¢} |
undo_op (LogMove t (Some (oldp, oldm)) newp m c, tree) =
{(p’,m’, c’) € tree. ¢’ # ¢} U {(oldp, oldm, c)}

fun redo_op :: ('t, 'n, 'm) log_op = ('t, 'n, 'm) state = ('t, 'n, 'm) state where
redo_op (LogMove t _p m c) (ops, tree) =
(let (0p2, tree2) = do_op (Move t p m c, tree)
in (op2 # ops, tree2))

fun apply_op :: ('t::{linorder}, 'n, 'm) operation = ('t, 'n, 'm) state = ('t, 'n, 'm) state where
apply_op op1 ([], treel) =
(let (op2, tree2) = do_op (op1, treel)
in (op2], tree2)) |
apply_op op1 (logop # ops, treel) =
(if move_time op1 < log_time logop
then redo_op logop (apply_op op1 (ops, undo_op (logop, treel)))
else let (op2, tree2) = do_op (op1, treel) in (op2 # logop # ops, tree2))

definition apply_ops :: ('t::{linorder}, 'n, 'm) operation list = ('t, 'n, 'm) state where
apply_ops ops = foldl (Astate oper. apply_op oper state) ([], {}) ops

definition unique_parent :: ('n x 'm x 'n) set = bool where
unique_parent tree =
(Vpl p2mlm2c. (pl, ml,c) € tree A (p2, m2, ¢) € tree — pl = p2 A ml = m2)

definition acyclic :: (n X ‘'m x 'n) set = bool where
acyclic tree = ($n. ancestor tree n n)

Fig. 4. The move operation algorithm, implemented in the Isabelle/HOL language.

That is, we remove any existing parent-child relationship
for ¢ from the set tree, and then add {(p, m, ¢)} to represent
the new parent-child relationship. This expression appears
on lines 30 and 35 of Figure 4, as we shall explain shortly.

3.2 Replica state and operation log

In order to correctly apply move operations, a replica needs
to maintain not only the current state of the tree, but also
an operation log. The log is a list of LogMove records in
descending timestamp order. LogMove t oldp p m c (lines 7—
12) is similar to Move t p m c; the difference is that LogMove
has an additional field oldp of type ('n x 'm) option. This
option type means the field can either take the value None
(similar to null), or a pair of a node ID and a metadata field.

When a replica applies a Move operation to its tree, it
also records a corresponding LogMove operation in its log.
The t, p, m and c fields are taken directly from the Move
record, while the oldp field is filled in based on the state of
the tree before the move. If ¢ did not exist in the tree, oldp is
set to None. Otherwise, oldp records the previous parent and
metadata of c: if there exist p” and m” such that (p’, m’, ¢) €
tree, then oldp is set to Some (p’, m’).

The get_parent function (lines 16-20) implements this. In
the first line of get_parent, the expression between :: and
where is the type signature of the function, in this case:

('n X 'm x 'n) set = 'n = ('n x 'm) option
This signature denotes a function that takes two arguments:
atree ('n X 'm x 'n) set and a node ID "n. It then returns a ('n
x 'm) option. The operator 3 /x means “there exists a unique
value x such that. ..”, while THE x means “choose the unique
value x such that...”.

In line 14 we define the datatype for the state of a replica:
a pair (log, tree) where log is a list of LogMove records, and
tree is a set of (parent, meta, child) triples as before.

3.3 Preventing cycles

Recall from §2.2 that in order to prevent a cycle being
introduced, the node being moved must not be an ancestor
of the destination node. To implement this we first define
the ancestor relation in lines 22-24. It is the transitive closure
of a tree’s parent-child relation: if (p, m, c) € tree then p is an
ancestor of ¢ (line 23); moreover, if a is an ancestor of p and
(p, m, c) € tree, then a is also an ancestor of ¢ (line 24). The
inductive keyword indicates that this recursive definition is
iterated until the least fixed point is reached.

The do_op function (lines 26-30) now performs the actual
work of applying a move operation. This function takes as
argument a pair consisting of a Move operation and the
current tree, and it returns a pair consisting of a LogMove
operation (which will be added to the log) and an updated
tree. In line 28, the LogMove record is constructed as de-
scribed in §3.2, obtaining the prior parent and metadata of ¢
using the get_parent function.

Line 29 performs the check that ensures no cycles are
introduced: if ancestor tree c newp, i.e. if the node c is being
moved, and c is an ancestor of the new parent newp, then the
tree is returned unmodified—in other words, the operation
is ignored. Similarly, the operation is also ignored if ¢ = newp.
Otherwise (line 30), the tree is updated by removing ¢ from
its existing parent, if any, and adding the new parent-child
relationship (newp, m, c) to the tree.

3.4 Applying operations in any order

The do_op function is sufficient for applying operations if
all replicas apply operations in the same order. However, in
an optimistic replication setting, each replica may apply the
operations in a different order, and we need to ensure that
the replica state nevertheless converges towards a consistent
state. This goal is accomplished by the undo_op, redo_op, and
apply_op functions (lines 32-49).

When a replica needs to apply an operation with time-
stamp ¢, it first undoes the effect of any operations with a
timestamp greater than f, then performs the new operation,
and finally re-applies the undone operations. As a result, the
state of the tree is as if the operations had all been applied
in order of increasing timestamp, even though in fact they
might have been applied in any order.

The apply_op function (lines 42-49) takes two arguments:
a Move operation to apply and the current replica state; and
it returns the new replica state. The constraint 't::{linorder}
in the type signature indicates that timestamps 't are in-
stances of the linorder type class, and they can therefore be
compared with the < operator defining a linear (or total)
order. This comparison occurs on line 47.

Recall that the replica state includes the operation log
(line 14), and we use this log to perform the undo-do-
redo cycle. Lines 43-45 handle the case where the log is
empty: in this case, we simply perform the operation using
do_op, and return the new tree along with a log containing
a single LogMove record. If the log is nonempty (line 46),
we take logop to be the first element of the log, and ops
to be the rest. (The hash character in logop # ops is the
list cons operator that adds one element to the head of a
list.) If the timestamp of logop is greater than the timestamp
of the new operation (line 47) we first undo logop with
undo_op, then recursively apply the new operation to the
remaining log, and finally reapply logop with redo_op (line
48). Otherwise we perform the operation using do_op, and
add the corresponding LogMove record as the head of the
log (line 49).

This logic ensures that the log is maintained in descend-
ing timestamp order, with the greatest timestamp at the
head. undo_op (lines 32-35) inverts the effect of a previous
move operation by restoring the prior parent and metadata
that were recorded in the LogMove’s additional field. redo_op
(lines 37—40) uses do_op to perform an operation again and
recomputes the LogMove record (which might have changed
due to the effect of the new operation).

3.5 Handling conflicts

Due to the undo-do-redo cycle, the state of the tree is as if
all operations had been applied using do_op in increasing
timestamp order, regardless of the order in which they
were actually applied. This provides a clear and consistent
approach to the handling of conflicts:

o If two operations concurrently move the same node,
the operation with the lower timestamp moves the
node first, and then the operation with the greater
timestamp moves it again, so the final parent is
determined by the latter. Since move operations do
not specify the old location of a node, but only the

new location, this sequential execution of concurrent
operations is well-defined. In Figure 1, the outcome
is (c) if the operation from replica 1 has the greater
timestamp, or (d) if the operation from replica 2 has
the greater timestamp.

o If two operations would introduce a cycle when
combined, as in §2.2, then the operation with the
greater timestamp is ignored because do_op checks
for cycles based on the tree created by all operations
with a lower timestamp. The lower of two conflicting
operations will take effect, since that operation by it-
self is safe. When the higher-timestamped operation
is applied, do_op detects that it would introduce a
cycle, and therefore ignores the operation. In the ex-
ample of Figure 2, the outcome is (c) if the operation
from replica 1 has the lower timestamp, or (d) if the
operation from replica 2 has the lower timestamp.

This resolution of a conflict between two operations can
be generalised to any number of conflicting operations by
repeatedly applying the rules pairwise.

Note that the safety of an operation (whether or not
it would introduce a cycle) may change as subsequent
operations with lower timestamps are applied. For example,
an operation may initially be regarded as safe, and then be
reclassified as unsafe after applying a conflicting operation
with a lower timestamp. The opposite is also possible: an
operation previously regarded as unsafe may become safe
through the application of an operation that removes the
risk of introducing a cycle. For this reason, the operation log
must include all operations, even those that were ignored.

One final type of conflict that we have not discussed
so far is multiple child nodes with the same parent and
the same metadata. For example, in a filesystem, two users
could concurrently create files with the same name in the
same directory. Our algorithm does not prevent such a
conflict, but simply retains both child nodes. In practice, the
collision would be resolved by making the filenames dis-
tinct, e.g. by appending a replica identifier to the filenames.

3.6 Node creation and deletion

As discussed previously, no separate operations for node
creation and deletion are needed, since a node is implicitly
created when it is first moved, and a node can be deleted
by moving it to a designated trash node outside of the tree.
By avoiding a distinction between different operation types
we simplify the algorithm and proofs of correctness, but we
potentially sacrifice performance in applications that mostly
create and delete nodes, and only occasionally move nodes.
Ideally, we would want to incur the costs of the undo-do-
redo process only for genuine move operations, and not for
node creation and deletion.

This optimisation is possible for operations that create
new tree nodes: such operations can be directly applied to
the tree without any undo/redo by using do_op instead of
apply_op, and they do not need to recorded in the log. We
have proved in Isabelle that this optimisation is safe, under
the following additional assumptions: 1. the parent node
in any move/create operation must exist in the tree; 2. the
creation operation for a given node must be unique (i.e.
there cannot be two operations that both create the same

7

node); 3. a node creation operation is applied before any
operation that moves the created node. These assumptions
are easily satisfied in practice.

For node deletion we have not been able to find a sim-
ilar optimisation. Deletion operations must go through the
undo-do-redo process because deleting a node may cause a
previously unsafe move operation with a greater timestamp
to become safe by breaking a particular ancestor relation-
ship; and as the previously ignored operation takes effect,
we must re-evaluate all operations with greater timestamps
to determine whether they are safe or not.

When a node is deleted, any children of the deleted node
remain in the tree, but since they are no longer reachable
from the root, they effectively become invisible to the ap-
plication. We do not recursively remove children, since a
move operation concurrent to the deletion operation might
move the deleted subtree back out of the trash and into
the visible tree; in this scenario we want all children of the
moved subtree to be preserved unmodified.

3.7 Algorithm extensions

Hardlinks and symlinks. Unix filesystems support hard-
links, which allow the same file inode to be referenced
from multiple locations in a tree. Our tree data structure
can easily be extended to support this: rather than placing
file data directly in the leaf nodes of the tree, the leaf node
must reference the file inode. Thus, references to the same
file inode can appear in multiple leaf nodes of the tree.
Symlinks are also easy to support, since they are just leaf
nodes containing a path (not a reference to an inode).

Log truncation. The algorithm as specified in Figure 4
retains operations in the log indefinitely, so the memory
use grows without bound. However, in practice it is easy
to truncate the log, because apply_op only examines the log
prefix of operations whose timestamp is greater than that of
the operation being applied. Thus, once it is known that all
future operations will have a timestamp greater than ¢, then
operations with timestamp ¢ or less can be discarded from
the log. In this case, we say that ¢ is causally stable [13].

A similar approach can be used to garbage-collect any
tree nodes in the trash (§3.1). Initially, trashed nodes must
be retained because a concurrent move operation may move
them back out of the trash. However, once the operation
that moved a node to the trash is causally stable, we know
that no future operations will refer to this node, and so the
trashed node and its descendants can be discarded.

We can determine causal stability in a system where
the set of replicas is known, where each replica generates
operations with monotonically increasing timestamps, and
where the communication link between any pair of replicas
is FIFO (messages are received in the order in which they
are sent, as implemented e.g. by TCP). In this case, we can
keep track of the most recent timestamp we have seen from
each replica (including our own), and the minimum of these
timestamps is the causally stable threshold.

Ordering of sibling nodes. Another useful extension of the
tree algorithm is to allow children of the same parent node
to have an explicit ordering. For example, in XML, the set of
children of an element is ordered. This can be implemented
by maintaining an additional list CRDT for each branch

node, e.g. using RGA [14] or Logoot [15]. These algorithms
assign a unique ID to each element of the list, and this ID
can be included in the metadata field of move operations in
order to determine the order of sibling nodes.

This approach to determining ordering also easily sup-
ports reordering of child nodes within a parent: to move
a node to a different position in a list, we use the list
CRDT to generate a new ID at the desired position in the
sequence [16]. Then we perform a move operation in which
the parent node is unchanged, and this new ID is used as
metadata.

4 PROOF OF CORRECTNESS

We now discuss the correctness properties of the algorithm
from §3. All theorems stated here have been formally proved
and mechanically checked using Isabelle. For space reasons
this paper gives only the statements that were proved, but
elides a discussion of the reasoning steps. The Isabelle files
containing the full details are open source [17], and are
included as supplementary material with this paper.

To reason about the state of a replica we first define the
function apply_ops on lines 51-52 of Figure 4. It takes a list
of operations ops and returns the state of a replica after it
has applied all the operations in ops. The apply_ops function
works by starting in the initial state ([J, {}) consisting of
the empty operation log [] and the tree represented by the
empty set {}, and then applying the operations one by one
to the state using the apply_op function (introduced in §3.4).
The foldl function from the Isabelle/HOL standard library
performs the iteration over the list of operations.

4.1 Tree invariants

A tree is an acyclic graph in which every node has exactly
one parent, except for the root, which has no parent. In fact,
we slightly generalise this property and allow more than
one root to exist, so the graph represents a forest, allowing
an application to move nodes between different trees if
desired. For example, the trash node used for deletion can
be separate from the main tree. To prove that our algorithm
maintains a forest structure, no matter which operations are
applied, we demonstrate several invariants.

Each node’s parent is unique. The first invariant we prove
is that each tree node has either no parent (if it is the root
of a tree) or exactly one parent (if it is a non-root node).
We state this theorem in Isabelle/HOL as follows, where
apply_ops_unique_parent is the name of this theorem:

theorem apply_ops_unique_parent:
assumes apply_ops ops = (log, tree)
shows unigue_parent tree

That is, we consider any list of operations ops and define
(log, tree) to be the replica state after ops have been applied.
We then prove that “unique_parent tree” holds, where the
unique_parent predicate is defined on lines 54-56 of Figure 4:
whenever the tree contains a triple whose third element is
the child node ¢, then the first and second elements of the
triple (the parent node and the metadata) are uniquely de-
fined. As we make no assumptions about ops, this theorem
holds for any replica state that can be reached by applying
any number of operations.

8

The graph contains no cycles. This second invariant is
expressed as follows in Isabelle/HOL:

theorem apply_ops_acyclic:
assumes apply_ops ops = (log, tree)
shows acyclic tree

The acyclic predicate is defined on lines 58-59 of Figure 4,
using the ancestor relation (the transitive closure of the
graph’s edges): a graph contains no cycles if no node is an
ancestor of itself.

Other correctness properties. There are further criteria we
might use to determine if our algorithm is correct. For
example, we might demonstrate that a single-replica system
operates with the usual sequential semantics of a tree. In a
system with multiple disjoint trees, we could prove that the
trees don’t get tangled together. We conjecture that those
properties hold for our algorithm, but leave the proof out of
scope for this paper.

4.2 Convergence

As discussed in §3.4, we require that when replicas apply
the same set of operations, they converge towards the same
state, regardless of the order in which the operations are
applied. We formalise this in Isabelle/HOL as follows:

theorem apply_ops_commutes:
assumes set ops1 = set ops2
and distinct (map move_time ops1)
and distinct (map move_time ops2)
shows apply_ops ops1 = apply_ops ops2

The predicate distinct takes a list as argument, and re-
turns true if all elements of the list are distinct (i.e. no value
occurs more than once in the list). Therefore, the assumption
distinct (map move_time opsl) states that in the list ops1, there
are no two operations with the same timestamp.

The function set takes a list and turns it into an un-
ordered set with the same elements. Thus, the assumption
set ops1 = set ops2 means that the lists ops1 and ops2 contain
the same elements, but perhaps in a different order—in
other words, opsl is a permutation of ops2. Under these
assumptions, apply_ops_commutes proves that applying the
list of operations opsl results in the same replica state as
applying the list of operations ops2.

Strong eventual consistency. Gomes et al. [4] define a
framework in Isabelle/HOL for proving the strong eventual
consistency properties of CRDTs. Using our convergence
proof above we integrate our tree datatype with this frame-
work, and thus demonstrate that our move operation on
trees does indeed guarantee strong eventual consistency.
The details appear in our Isabelle theory files [17].

4.3 Making the HOL definitions executable

Isabelle/HOL can generate executable Haskell, OCaml,
Scala, and Standard ML code from HOL definitions using
a sophisticated code generation mechanism [18]. However,
not all definitions can be realised in executable form: for
example, the use of choice principles (like in get_parent) and
inductively defined relations (e.g. ancestor) cause problems.
Moreover, HOL's set type allows infinite sets. Whilst these

T T T T
Time to apply remote operation

1800 ‘

Time [us]
S
o
o
T

0 | | | | | |
0 100 200 300 400 500 600

100 T

T T T
Time to apply local operation B

Time [us]

0 | | | | L
0 100 200 300 400 500 600

Move operations per second

Fig. 5. Median execution time to apply an operation to the replica state,
using Scala code generated by Isabelle. Error bars indicate the minimum
and 95th percentile.

constructs are convenient for theorem proving, they do not
translate well to executable code.

We therefore produce variants of the definitions in Fig-
ure 4 that are designed for execution rather than theorem
proving. Rather than representing the tree as a set of (parent,
meta, child) triples, these definitions use a hash-map in
which the keys are child nodes, and the values are (meta,
parent) pairs, written in Isabelle/HOL as ('n::{hashable}, ‘m
x 'n) hm. The hashable type class means that keys must have
a hashing function. In effect, this hash-map is an index over
the set of triples, using the fact that the parent and metadata
for a given child are unique (§4.1). The hash-map implemen-
tation is from the Isabelle Collections Framework [19].

A hash-map ¢ of type ('n, ‘m x 'n) hm simulates a set T of
type ('n x ‘m x 'n) set when their entries are the same:

definition simulates where simulates t T =
(Vp m c. hm.lookup c t = Some (m, p) «— (p, m,c) € T)

where hm.lookup c t looks up the key c in the hash-map ¢,
returning Some x if ¢ maps to the value x, and returning
None if ¢ does not appear in the hash-map. We can now
prove the equivalence of the set-based and the hash-map-
based implementations:

lemma executable_apply_ops_simulates:
assumes executable_apply_ops ops = (log1, t)
and apply_ops ops = (log2, T)
shows log1 = log2 A simulates t T
That is, if executable_apply_ops and apply_ops are applied
to the same list of operations, they produce identical logs,
and also produce trees that contain the same set of key-
value bindings—i.e. the trees are extensionally equivalent,
despite having very different in-memory representations.
We can also prove corollaries of apply_ops_commutes and
apply_ops_acyclic for the hash-map-based implementation.

5 EVALUATION
5.1 Performance of move operation

With our algorithm, the worst-case cost of applying a move
operation is O(nd), where n is the number of operations

300 T T T T T
Time to apply remote operation
250 |- pply P! |
- 200 - 1
=
o 150 |- i
E
= 100 [g
50 - 1
0 | | | | | |
0 1000 2000 3000 4000 5000 6000
1‘21 T T T T
2 10 Time to apply local operation i
o 8]
£ 9§ ’
[
% | | | | \7
0 1000 2000 3000 4000 5000 6000

Move operations per second

Fig. 6. Median execution time to apply an operation to the replica state,
using a hand-optimised (not formally verified) Scala implementation.
Error bars indicate the minimum and 95th percentile.

in the log that need to be undone and redone, and d is
the depth of the tree (the number of parent relationships
that need to be traversed to check whether the operation
would introduce a cycle). To demonstrate that this cost is
acceptable in practice, we evaluated the performance of two
implementations of our algorithm. The first implementation
is Scala code extracted from our formally verified HOL def-
initions using Isabelle/HOL's code generation mechanism.
The second implementation is handwritten Scala code that
we believe to be functionally equivalent, but which we have
not formally verified. By comparing these implementations
we can distinguish between inefficiencies introduced by
code generation and costs that are inherent to our algorithm.

We wrapped both implementations in a simple net-
work service and deployed three replicas on Amazon EC2
c5.large instances in Northern California (us-west-1),
Ireland (eu-west-1), and Singapore (ap-southeast-1).
The network delays between these regions are substantial:
a round trip from Ireland to California takes a median of
145 ms, and from Singapore to California takes 176 ms.

We use a synthetic workload in which each replica starts
with an empty tree and generates move operations at a
fixed rate; for each move operation the generating replica
chooses parent and child nodes uniformly at random from
a set of 1,000 tree nodes. A tree node is created by the first
operation that refers to it, and for simplicity we do not
use the optimisation discussed in § 3.6. We use Lamport
clocks [9] as operation timestamps, and 64-bit integers to
identify tree nodes. When a replica generates an operation,
it immediately applies that operation to its local state, and
it asynchronously sends the operation to the other two
replicas via TCP connections. When a replica receives an op-
eration from a remote replica, it also applies that operation
to its own replica state. Thus, of the operations applied by
each replica, approximately one third are locally generated,
and two thirds are received from the other two replicas.
A replica does not wait for a response for the previous
operation before generating and sending the next, so there
may be many operations “in flight” at the same time.

10

1x10° w ‘

Singapore to leader in California / }
Z i o A A - A a=s g <1
‘= 100000 ¥ N~ e
2 Ireland to leader in California Leader-based operations E
g (Isabelle—generated code)
g 10000 ¢ Leader-based operations
=) (optimised code)]
o CRDT remote operations

I lle—
-g 1000 L (Isabelle-generated code) il
N
j
a 100 ¢ / E
[
o
5 AN
k] 10 | E
g / CRDT local operations (optimised)
1 L | |

100

1000 10000

Move operations per second

Fig. 7. Median time to apply a local CRDT operation compared to the median time to perform a move operation using state machine replication,

with a leader located in another region. Note the log scale on both axes.

For a given operation rate we ran the system for 10
minutes to reach a steady state. We repeated the experiment
with different operation rates, and measured the execution
time of our algorithm for applying each operation. Figures 5
and 6 show the results for the Isabelle-generated code and
the handwritten code respectively. In each figure, the upper
plot shows the distribution of execution times to apply one
operation received from another replica, and the lower plot
shows the time to apply one locally generated operation.

Both implementations exhibit qualitatively similar be-
haviour, but the absolute numbers differ significantly. A
local operation takes near-constant time to apply because
its timestamp is always greater than any existing operation
at the generating replica (by definition of Lamport clocks),
so it does not require any undo or redo. The median time
to apply a local operation is around 50 ps for the Isabelle-
generated code and around 1-2 ps for the handwritten code.
The reduced performance at low operation rates can be
explained by the JVM delaying JIT optimisations until a
method has been executed a certain number of times.

For remote operations, the execution time increases pro-
portionally to the rate at which operations are generated: as
the time interval between successive operations decreases
relative to the network delay, more operations are in flight
at the same time, and more undos/redos are required to
put operations in timestamp order. At some point, each
single-threaded replica is fully utilising one CPU core, and
increasing the rate at which operations are generated does
not increase throughput any further. The Isabelle-generated
code is saturated at a rate of 600 operations/sec (median
remote operations taking ~21 ms), while the optimised code
is saturated at 5,700 operations/sec. This factor of 9.5 perfor-
mance difference is solely due to inefficient code generation;
functionally both implementations perform the same work.

At peak, the optimised implementation is performing
on average 200 undos and redos per remote operation.
The throughput could be increased by applying a batch of
operations at once, which would allow the cost of the undos
and redos to be amortised over the size of the batch. We
leave an evaluation of this optimisation for future work.

5.2 Comparison to locking/state machine replication

An alternative to our CRDT algorithm is to use a locking
protocol (§ 2.3). For example, a replica can acquire a lock
from a lock server, perform an update, and then release the
lock again. The minimum time for which a lock will be held
after it is acquired is then the round-trip time. If the lock
server is in California and the replica is in Singapore, and if
one move operation is performed per lock acquisition, this
system could only perform 1/176 ms = 5.7 operations/sec.
The throughput of this locking-based scheme is therefore
three orders of magnitude lower than our optimised algo-
rithm’s throughput of 5,700 operations/sec.

A better alternative to our CRDT algorithm is to use state
machine replication [20]: that is, we use a leader replica or
consensus algorithm to impose a total order on all opera-
tions, and then execute operations in that same order on all
replicas. For a move operation on trees, the state machine
replication algorithm is much simpler than the CRDT: it still
needs to check for cycles, but it never needs to undo or redo
any operations because they are never applied out-of-order.

To compare the performance of our algorithm to the state
machine approach we ran another set of experiments on the
same three replicas in California, Ireland, and Singapore.
In this experiment, the Californian replica was designated
leader; it totally ordered all operations it received, and sent
them to all other replicas in the same order. The Irish and
Singaporean replicas generated operations, sent them to the
leader, and applied them to their local tree in the order
they were received from the leader. In order to ensure
a fair comparison to the CRDT algorithm, we ran these
experiments using the same two implementations (Isabelle-
generated and handwritten) and the same networking code.

The results are shown in Figure 7. Using the Isabelle-
generated code, the leader-based approach is able to sustain
14,000 move operations per second (23 times the CRDT’s
throughput of 600 ops/sec). Using the handwritten code,
the leader-based throughput is 22,000 ops/sec (4 times the
CRDT'’s throughput of 5,700 ops/sec). The downside of state
machine replication is that performing an operation requires
waiting for a round-trip to the leader, which implies around

five orders of magnitude higher latency (145-176 ms) than
the 1-2 ps it takes to execute local CRDT operations.

Therefore, we have a clear trade-off: in applications that
need to maximise throughput, a state machine replication
approach is preferable; in applications that need to minimise
response times to user requests or that need to continue
to be available during network interruptions, our CRDT
algorithm is preferable. In the leader-based approach, clients
cannot make updates while offline.

5.3 Evaluation of formal proof

The formalisation of our algorithm, and the proofs of its
properties as described in §4, have been formally checked
by Isabelle/HOL. Our proofs contain no unproven assump-
tions (i.e. no occurrences of the sorry keyword). Checking
all of the proofs takes 3 minutes on a 2018 MacBook Pro.

Besides the 59 lines of definitions given in Figure 4,
our Isabelle/HOL formalisation consists of a further 2,495
lines of proof code. Of this, we use 203 lines to prove that
every node has a unique parent, 443 lines to prove that
the tree contains no cycles, 450 lines to prove that move
operations commute and replicas converge, 327 lines to
prove the strong eventual consistency property, 743 lines
to define the executable variant of our algorithm and prove
its equivalence to the definitions of Figure 4, and 779 lines
to prove the safety of the optimisation in §3.6.

6 RELATED WORK

Many replicated data systems use optimistic replication [2],
which allows the state of replicas to temporarily diverge, in
order to achieve better performance and availability in the
presence of faults than strongly consistent systems [1], [21].
As a consequence, these systems require a mechanism for
merging or reconciling conflicting updates that were made
concurrently on different replicas. For example, version
control systems such as Git [22] leave conflicts for the user
to resolve manually. Databases such as Dynamo [23] and
Bayou [24] rely on the application programmer to provide
explicit conflict resolution logic; however, such logic is dif-
ficult to get right [4], [25], [26]. Hence, we want to automat-
ically ensure that all replicas converge towards a consistent
state, without requiring custom application logic—a consis-
tency model known as strong eventual consistency [3], [4].

6.1

Our algorithm is an example of an operation-based Conflict-
free Replicated Data Type or CRDT [3], [27]. All CRDTs
share the property that concurrent changes on different
replicas can be merged in any order; any two replicas that
have seen the same set of updates are guaranteed to be in the
same state, regardless of the order in which they processed
these updates. Several CRDTs for trees have been proposed:

e Martin et al. [28], [29] define a CRDT for XML data,
and Kleppmann and Beresford [30] define a CRDT
for JSON. However, these algorithms only deal with
insertion and deletion of tree nodes, and do not
support moves. A move operation can be emulated
by deleting and re-inserting the moved node, but

Conflict-free Replicated Data Types

11

this approach suffers from the duplication problem
demonstrated in §2.1.

o Asdiscussed in §2.3, Najafzadeh et al. [5], [6] propose
two implementations for a replicated filesystem: a
CRDT in which conflicting moves are handled by
duplicating tree nodes (as in Figures 1b and 2b),
and a centralised implementation in which move
operations must obtain a lock before executing (not
a CRDT since it relies on synchronous coordination).
We discuss the performance costs of locking in §5.2.

e Ahmed-Nacer et al. [31] outline approaches to han-
dling conflicts on trees, but provide no algorithms.

e Tao et al. [32] propose handling conflicting move
operations by allowing the same object to appear in
more than one location; thus, their datatype is strictly
a DAG, not a tree. Some conflicts are handled by
duplicating tree nodes. Tao et al. also perform exper-
iments with Dropbox, Google Drive, and OneDrive,
similar to our experiments discussed in §2.

e Nair et al. [33] develop a CRDT tree with move
operation. This work is concurrent to ours and it is
unpublished at the time of writing, so we have not
been able to conduct a detailed comparison.

Several other CRDTs, such as Treedoc [34] and
LSEQ [35], use a tree structure internally. However, their
data model is a linear sequence; the tree structure is not
accessible to the application (for example, an application
cannot freely choose the parent node of a new tree node),
and they do not provide a move operation.

Besides CRDTs, another family of algorithms for con-
current modification of data structures is Operational Trans-
formation (OT) [36]. Several authors have defined concurrent
tree structures using OT [37], [38], [39], but they only handle
insertion and deletion of nodes, and do not support moves.

Molli et al. [40] define an OT tree structure with a move
operation. However, it requires that all communication be-
tween replicas is performed via total order broadcast, which
requires a leader replica or consensus algorithm, like in §5.2.
Our algorithm has better availability characteristics in the
presence of network partitions because it allows messages
to be delivered in any order, e.g. via peer-to-peer protocols.

Collaborative graphics software Figma uses an approach
inspired by CRDTs, but prevents cycles in their object tree
by relying on a central server; its replication protocol allows
objects to temporarily disappear while syncing [41].

6.2 Distributed filesystems

Many distributed filesystems, such as NFS, rely on syn-
chronous interaction with a server. This avoids the need for
conflict resolution, but rules out users working offline.
Coda is a client-server filesystem that allows clients to
locally cache copies of files stored in a server-side data
repository [42]. Clients can edit data in the cache while
offline, during which time a kernel module keeps track of all
updates. When the client comes back online it attempts to
resynchronise changes with the server. To resolve conflicts
due to concurrent updates, Coda uses application-specific
resolvers [43], similarly to Bayou’s approach [24]. Concur-
rent renaming and move operations have been considered,
but the authors note that they do “not address transparent

resolution of cross-directory renames [i.e. move operations]
in [their] current implementation” [44]. Furthermore, while
the authors consider a number of conflicts associated with
directory move operations, they do not highlight the poten-
tial for the creation of cycles.

Ficus [45] is an in-kernel SunOS-based replicated peer-
to-peer filesystem. Ficus supports updates to replicas during
periods of network partition and claims “conflicting updates
to directories are detected and automatically repaired” [46].
Unfortunately we were unable to find a precise definition of
the algorithm used in any of the available publications.

Rumor [47], [48] is the successor to Ficus. While pre-
vious work uses the kernel filesystem interface, Rumor is a
userspace process that is invoked periodically by the user or
by a daemon; when run, it compares the state of the replicas.
The original version of Rumor was unable to scale beyond
20 replicas, but an extension called Roam [49] allowed better
scaling. In an attempt to test Rumor’s conflict handling we
obtained the source code from archive.org [50]; however, we
were unable to get it running after modest effort.

Unison is a file synchronisation tool with a formal spec-
ification that allows two replicas to synchronise the state of
a directory [51]. It permits offline updates to both replicas.
Like Rumor, Unison is a userspace process that compares
replica states. Whenever it is run, Unison records a summary
of the filesystem state on each replica, and it uses this
summary to determine the changes made since the last
synchronisation. When presented with the move operations
described in Figure 1, Unison duplicates the files, resulting
in the outcome shown in Figure la. Unison is unable to
automatically synchronise the move operations shown in
Figure 2 and instead asks the user to choose one of four
possible resolutions: those shown in Figure 2b, 2¢, 2d, or to
delete both directories.

Hughes et al. [52] test Dropbox and Google Drive against
a formal specification, but they do not consider moving files,
and thus they do not find the issue described in §2.2.

Bjorner [53] discusses the development of the Dis-
tributed File System Replication (DFS-R) component of Win-
dows Server, during which a model checker found an issue
with concurrent moves similar to Figure 2a. Bjorner outlines
several possible solutions, but notes that model-checking
their algorithm was not feasible due to state space explosion.
Our use of proof by induction, rather than model-checking,
allows us to verify the correctness of our algorithm in
unbounded executions.

After we performed the experiments described in §2,
the Dropbox engineering team published a blog post [54]
acknowledging the problems of cycles and duplication due
to concurrent moves.

6.3 Totally ordered operation log

Our approach of ordering operations by a timestamp, and
undoing/redoing them as necessary so that they take effect
in ascending timestamp order, is conceptually very simple.
Similar ideas appear in many other systems, including the
Bayou database [24], Jefferson’s Time Warp mechanism [55],
and Burckhardt’s standard conflict resolution [26, §4.3.3]. The
concept of undo-redo is also well known from write-ahead

logging [56].

12

The SECRO approach [57] allows arbitrary CRDTs to be
defined by having each replica execute deterministic update
functions in the same total order, and replaying operation
history if necessary. In principle, our algorithm could be
expressed as a SECRO, but we provide optimisations that
go beyond the SECRO model. SECRO always processes op-
erations in forward direction, whereas our use of undo/redo
is more efficient on long operation histories if replicas have
most of the operation log in common. (SECRO allows long
operation histories to be truncated, but this mechanism may
result in discarded operations if replicas are disconnected
for extended periods of time.) Moreover, our optimisation of
node creation operations (§3.6) is specific to our algorithm,
and is not possible in the general SECRO model.

As an example of the SECRO approach, De Porre et
al. present an AVL tree CRDT [57]. Even though this data
structure is internally a tree, the interface it exposes is an
ordered set datatype, not a tree in which the user can choose
to create, delete, and move arbitrary nodes.

To our knowledge, the approach of ordering opera-
tions by timestamp has not previously been applied to the
problem of replicated trees, and in particular not a move
operation. We are not aware of previous mechanised proofs
(using Isabelle or other tools) that formalise this approach.

7 CONCLUSIONS

We have defined a novel algorithm that handles arbitrary
concurrent modifications of a tree data structure—adding,
moving, and removing nodes—in a peer-to-peer replication
setting. It is applicable to distributed filesystems, databases,
and applications that use a tree-structured data model. Our
approach ensures that all replicas converge to the same con-
sistent state without needing any manual conflict resolution,
and without requiring application developers to implement
conflict handling logic. Updates made to a local replica take
effect immediately, while operations from remote replicas
can be propagated and applied asynchronously. This ap-
proach means that user interaction is consistently fast, even
in the face of unbounded communication delays or during
disconnected operation of mobile devices.

The principle behind our algorithm is easy to under-
stand: undoing and redoing operations so that they are
effectively executed in timestamp order. Nevertheless, it
solves a real problem that has not been solved correctly
in widely deployed software such as Google Drive and
Dropbox, as we demonstrated in §2. To rule out such bugs,
we formally verified the correctness of our algorithm using
the Isabelle/HOL proof assistant; our theorems show that
replicas can apply operations in any order, and that the
result is always a valid tree (nodes have at most one parent,
and the graph does not contain any cycles). Moreover, these
results apply to unbounded executions and an arbitrary
number of replicas—an advantage of using a proof assistant
over other formal approaches such as model checking.

One might wonder whether our algorithm’s consistency
model is strong enough for practical use. On this point, we
note that this model is what Google Drive and Dropbox use
today [52] (apart from the aforementioned bugs).

We also evaluated the performance of two implemen-
tations of our algorithm (one formally verified, the other

optimised for performance) across three replicas in Califor-
nia, Ireland and Singapore. Our optimised implementation
applies local updates in 1-2 ps, five orders of magnitude
faster than is possible with a leader replica or consensus
protocol operating over these distances, and our algorithm
remains available in the face of network interruptions. How-
ever, compared to leader-based replication our algorithm
has four times lower throughput.

Our work is especially interesting due to the ubiquity of
tree data models across many different types of applications
and databases. In future work we hope to integrate our
algorithm into CRDT libraries such as Au‘comerge,2 and use
it to build novel collaborative applications.

We are also exploring whether the undo-do-redo ap-
proach can be used in other concurrent data structures;
for example, there is an open problem in collaborative text
editing [16] that might be solved by this approach. Our
Isabelle/HOL formalisation, which is open source [17], can
be used for future work in this area.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the support of The Boeing
Company and the EPSRC “REMS: Rigorous Engineering
for Mainstream Systems” programme grant (EP/K008528).
Martin Kleppmann is supported by a Leverhulme Trust
Early Career Fellowship, the Isaac Newton Trust, Nokia Bell
Labs, and crowdfunding supporters including Ably, Adria
Arcarons, Chet Corcos, Macrometa, Mintter, David Pollak,
Relational Al, SoftwareMill, Talent Formation Network, and
Adam Wiggins. Our evaluation was conducted using AWS
credits from the AWS Educate program. Thank you to Marc
Shapiro for feedback on a draft of this paper.

REFERENCES

[1] S.Gilbertand N. A. Lynch, “Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services,” ACM
SIGACT News, vol. 33, no. 2, pp. 51-59, 2002.

[2] Y. Saito and M. Shapiro, “Optimistic replication,” ACM Computing
Surveys, vol. 37, no. 1, pp. 42-81, Mar. 2005.

[3] M. Shapiro, N. Preguica, C. Baquero, and M. Zawirski, “Conflict-
free replicated data types,” in 13th International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS), Oct.
2011, pp. 386—400.

[4] V.B.E Gomes, M. Kleppmann, D. P. Mulligan, and A. R. Beresford,
“Verifying strong eventual consistency in distributed systems,”
Proceedings of the ACM on Programming Languages (PACMPL),
vol. 1, no. OOPSLA, Oct. 2017.

[5] M. Najafzadeh, “The analysis and co-design of weakly-consistent
applications,” Ph.D. dissertation, Université Pierre et Marie Curie,
Aug. 2016. [Online]. Available: https://tel.archives-ouvertes.fr/
tel-01351187v1

[6] M. Najafzadeh, M. Shapiro, and P. Eugster, “Co-design and verifi-
cation of an available file system,” in 19th International Conference
on Verification, Model Checking, and Abstract Interpretation (VMCAI),
Jan. 2018, pp. 358-381.

[7] M. Wenzel, L. C. Paulson, and T. Nipkow, “The Isabelle frame-
work,” in 21st International Conference on Theorem Proving in Higher
Order Logics (TPHOLs), Aug. 2008, pp. 33-38.

[8] P. R. Johnson and R. H. Thomas. (1975, Jan.) RFC 677:
The maintenance of duplicate databases. [Online]. Available:
https:/ /tools.ietf.org /html/rfc677

[9] L. Lamport, “Time, clocks, and the ordering of events in a dis-
tributed system,” Communications of the ACM, vol. 21, no. 7, pp.
558-565, Jul. 1978.

2. https:/ /github.com/automerge /automerge

13

[10] A. Gotsman, H. Yang, C. Ferreira, M. Najafzadeh, and M. Shapiro,
“‘Cause I'm strong enough: reasoning about consistency choices
in distributed systems,” in 43rd ACM Symposium on Principles of
Programming Languages (POPL), Jan. 2016, pp. 371-384.

[11] M. Najafzadeh, A. Gotsman, H. Yang, C. Ferreira, and M. Shapiro,
“The CISE tool: Proving weakly-consistent applications correct,”
in 2nd Workshop on the Principles and Practice of Consistency for
Distributed Data (PaPoC), Apr. 2016.

[12] T. Nipkow and G. Klein, Concrete Semantics - With Isabelle/HOL.
Springer, 2014. [Online]. Available: http://concrete-semantics.
org/

[13] C. Baquero, P. S. Almeida, and A. Shoker, “Making operation-
based CRDTs operation-based,” in 14th IFIP International Confer-
ence on Distributed Applications and Interoperable Systems (DAIS),
Jun. 2014, pp. 126-140.

[14] H.-G.Roh, M. Jeon,]J.-S. Kim, and J. Lee, “Replicated abstract data
types: Building blocks for collaborative applications,” Journal of
Parallel and Distributed Computing, vol. 71, no. 3, pp. 354-368, 2011.

[15] S. Weiss, P. Urso, and P. Molli, “Logoot-Undo: Distributed col-
laborative editing system on P2P networks,” IEEE Transactions on
Parallel and Distributed Systems, vol. 21, no. 8, pp. 1162-1174, Jan.
2010.

[16] M. Kleppmann, “Moving elements in list CRDTs,” in 7th Workshop
on Principles and Practice of Consistency for Distributed Data (PaPoC),
Apr. 2020.

[17]1 M. Kleppmann, D. P. Mulligan, V. B. E Gomes, and A. R.
Beresford, “Source code accompanying ‘A highly-available
move operation for replicated trees’,” 2021. [Online]. Available:
https://github.com/trvedata/move-op

[18] E. Haftmann and T. Nipkow, “Code generation via higher-order
rewrite systems,” in 10th International Symposium on Functional and
Logic Programming (FLOPS), 2010, pp. 103-117.

[19] P. Lammich and A. Lochbihler, “The Isabelle Collections Frame-
work,” in 1st International Conference on Interactive Theorem Proving
(ITP), 2010, pp. 339-354.

[20] E B. Schneider, “Implementing fault-tolerant services using the
state machine approach: A tutorial,” ACM Computing Surveys,
vol. 22, no. 4, pp. 299-319, Dec. 1990.

[21] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein,
and I. Stoica, “Coordination avoidance in database systems,”
Proceedings of the VLDB Endowment, vol. 8, no. 3, pp. 185-196, Nov.
2014.

[22] S. Chacon and B. Straub, Pro Git, 2nd ed. Berkeley, CA: Apress,
2014. [Online]. Available: https://git-scm.com/book/en/v2

[23] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels,
“Dynamo: Amazon’s highly available key-value store,” in 21st
ACM Symposium on Operating Systems Principles (SOSP), Oct. 2007,
pp- 205-220.

[24] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M.]J.
Spreitzer, and C. H. Hauser, “Managing update conflicts in Bayou,
a weakly connected replicated storage system,” in 15th ACM
Symposium on Operating Systems Principles (SOSP), Dec. 1995, pp.
172-182.

[25] P. Bailis and A. Ghodsi, “Eventual consistency today: Limitations,
extensions, and beyond,” ACM Queue, vol. 11, no. 3, Mar. 2013.

[26] S. Burckhardt, “Principles of eventual consistency,” Foundations
and Trends in Programming Languages, vol. 1, no. 1-2, pp. 1-150,
Oct. 2014.

[27] S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski, “Repli-
cated data types: Specification, verification, optimality,” in 41st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), Jan. 2014, pp. 271-284.

[28] S. Martin, P. Urso, and S. Weiss, “Scalable XML collaborative
editing with undo,” in On the Move to Meaningful Internet Systems,
Oct. 2010, pp. 507-514.

[29] S. Martin, M. Ahmed-Nacer, and P. Urso, “Abstract unordered
and ordered trees CRDT,” INRIA, Research Report RR-7825, Dec.
2011. [Online]. Available: https:/ /hal.inria.fr/hal-00648106

[30] M. Kleppmann and A. R. Beresford, “A conflict-free replicated
JSON datatype,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 28, no. 10, pp. 2733-2746, Apr. 2017.

[31] M. Ahmed-Nacer, S. Martin, and P. Urso, “File system on
CRDT,” INRIA, Tech. Rep. RR-8027, Jul. 2012. [Online]. Available:
https:/ /hal.inria.fr/hal-00720681/

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

(50]

[51]

[52]

V. Tao, M. Shapiro, and V. Rancurel, “Merging semantics for
conflict updates in geo-distributed file systems,” in 8th ACM
International Systems and Storage Conference (SYSTOR), May 2015.
S. S. Nair, F. Meirim, M. Pereira, C. Ferreira, and M. Shapiro,
“A coordination-free, convergent, and safe replicated tree,” 2021,
unpublished draft.

N. Preguica, J. Manuel Marques, M. Shapiro, and M. Letia, “A
commutative replicated data type for cooperative editing,” in
29th IEEE International Conference on Distributed Computing Systems
(ICDCS), Jun. 2009.

B. Nédelec, P. Molli, A. Mostefaoui, and E. Desmontils, “LSEQ: an
adaptive structure for sequences in distributed collaborative edit-
ing,” in 13th ACM Symposium on Document Engineering (DocEng),
Sep. 2013, pp. 37-46.

C. Sun and C. Ellis, “Operational transformation in real-time
group editors: Issues, algorithms, and achievements,” in ACM
Conference on Computer Supported Cooperative Work (CSCW), Nov.
1998, pp. 59-68.

T. Jungnickel and T. Herb, “Simultaneous editing of JSON objects
via operational transformation,” in 31st Annual ACM Symposium
on Applied Computing (SAC), Apr. 2016, pp. 812-815.

C.-L. Ignat and M. C. Norrie, “Customizable collaborative editor
relying on treeOPT algorithm,” in 8th European Conference on
Computer-Supported Cooperative Work (ECSCW), Sep. 2003, pp. 315-
334.

A. H. Davis, C. Sun, and J. Lu, “Generalizing operational trans-
formation to the Standard General Markup Language,” in ACM
Conference on Computer Supported Cooperative Work (CSCW), Nov.
2002, pp. 58-67.

P. Molli, G. Oster, H. Skaf-Molli, and A. Imine, “Using the transfor-
mational approach to build a safe and generic data synchronizer,”
in 2003 International ACM SIGGROUP Conference on Supporting
Group Work, Nov. 2003, pp. 212-220.

E. Wallace. (2019, Oct.) How Figma’s multi-
player technology works. Archived at https://perma.cc/
79TM-6FEE. [Online]. Available: https://www.figma.com/blog/
how-figmas-multiplayer-technology-works/

J.]. Kistler and M. Satyanarayanan, “Disconnected operation in the
coda file system,” ACM Transactions on Computer Systems (TOCS),
vol. 10, no. 1, pp. 3-25, 1992.

P. Kumar and M. Satyanarayanan, “Flexible and safe resolution of
file conflicts,” in USENIX Winter Technical Conference, Jan. 1995.
——, “Log-based directory resolution in the coda file system,” in
2nd International Conference on Parallel and Distributed Information
Systems (PDIS), 1993, pp. 202-213.

P. Reiher, J. Heidemann, D. Ratner, G. Skinner, and G.]J. Popek,
“Resolving file conflicts in the Ficus file system,” in Summer
USENIX Conference, Jun. 1994, pp. 183-195.

R. G. Guy, J. S. Heidemann, W.-K. Mak, T. W. Page Jr, G.]J. Popek,
D. Rothmeier et al., “Implementation of the Ficus replicated file
system,” in Summer USENIX Conference, 1990, pp. 63-72.

R. Guy, P. Reiher, D. Ratner, M. Gunter, W. Ma, and G. Popek,
“Rumor: Mobile data access through optimistic peer-to-peer repli-
cation,” in Advances in Database Technologies, LNCS 1552. Springer
Berlin Heidelberg, Nov. 1999, pp. 254-265.

P. Reiher, “Rumor 1.0 wuser’s manual,” 1998. [Online].
Available: https://web.archive.org/web/20170705140958/ftp:/ /
ftp.cs.ucla.edu/pub/rumor/rumor_users_manual.ps

D. Ratner, P. Reiher, and G. J. Popek, “Roam: a scalable replication
system for mobile computing,” in 10th International Workshop on
Database and Expert Systems Applications (DEXA). 1EEE, Sep. 1999,

pp- 96-104.
Rumor development team at UCLA, “Ru-
mor 1.0.2 source code,” 1998. [Online]. Avail-

able: https:/ /web.archive.org/web/20170705140950/ ftp:/ / ftp.cs.
ucla.edu/pub/rumor/rumor.src.release-1.0.2.tar.gz

B. C. Pierce and J. Vouillon, “What’s in Unison? A formal
specification and reference implementation of a file synchronizer,”
Dept. of Computer and Information Science, University of
Pennsylvania, Tech. Rep. MS-CIS-03-36, 2004. [Online]. Available:
http:/ /www.cis.upenn.edu/~bcpierce/papers/unisonspec.pdf

J. Hughes, B. C. Pierce, T. Arts, and U. Norell, “Mysteries of
Dropbox: Property-based testing of a distributed synchronization
service,” in IEEE International Conference on Software Testing, Verifi-
cation and Validation (ICST), Apr. 2016, pp. 135-145.

(53]

[54]

[55]

[56]

[57]

14

N. Bjerner, “Models and software model checking of a distributed
file replication system,” in Formal Methods and Hybrid Real-Time
Systems, LNCS 4700. Springer Berlin Heidelberg, 2007, pp. 1-23.

S. Jayakar, “Rewriting the heart of our sync engine,”
Mar. 2020, archived at https://perma.cc/HU2D-H9X4.
[Online]. Available: https:/ /dropbox.tech/infrastructure/

rewriting-the-heart- of-our-sync-engine

D. R. Jefferson, “Virtual time,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 7, no. 3, pp. 404-425, Jul.
1985.

C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz,
“ARIES: A transaction recovery method supporting fine-
granularity locking and partial rollbacks using write-ahead log-
ging,” ACM Transactions on Database Systems (TODS), vol. 17, no. 1,
pp- 94-162, Mar. 1992.

K. De Porre, F. Myter, C. De Troyer, C. Scholliers, W. De Meuter,
and E. Gonzalez Boix, “Putting order in strong eventual consis-
tency,” in IFIP International Conference on Distributed Applications
and Interoperable Systems (DAIS). Springer, Jun. 2019, pp. 36-56.

Martin Kleppmann is a Senior Research As-
sociate at the University of Cambridge. His re-
search spans distributed systems, databases,
security, and formal verification, with a fo-
cus on decentralised collaboration software and
CRDTs. His book Designing Data-Intensive Ap-
plications was published in 2017 and has been
translated into six languages. Previously, he was
a software engineer and entrepreneur at Internet
companies including Rapportive and LinkedIn.

Dominic P. Mulligan is a Principal Research
Engineer in the Systems Group at Arm Re-
search, UK. Prior to moving to Arm, he worked
as a postdoctoral researcher at the Universi-
ties of Cambridge and Bologna, Italy, investi-
gating the formal specification and verification
of systems software such as C compilers and
linkers. His interests include formal verification,
distributed systems, and privacy and security.

Victor B. F. Gomes received a diplome
d’ingénieur from INSA Lyon and a PhD degree
from the University of Sheffield. He was a re-
search associate at the University of Cambridge
from 2016 to 2019 and he is currently working at
Google. His main research interests are seman-
tics of programming languages, formal verifica-
tion via theorem prover assistants and algebraic
approaches for program verification.

Alastair R. Beresford is Professor of Computer
Security in the Department of Computer Science
at the University of Cambridge. His research
work explores the security and privacy of large-
scale distributed systems, with a particular focus
on networked mobile devices such as smart-
phones, tablets and laptops. He looks at the
security and privacy of the devices themselves,
as well as the security and privacy problems in-
duced by the interaction between mobile devices
and cloud-based Internet services.

